Moulay Ismaïl University
Faculty of Sciences and Technology of Errachidia Department of Mathematics

THE INTERNATIONAL CONFERENCE ON ALGEBRA AND ITS APPLICATIONS

Communication Abstracts

FST Errachidia, Morocco

April 26-28, 2017

The Faculty of Sciences and Technology of Errachidia and Department of Mathematics organize an international conference whose theme is :

«The International Conference on Algebra and its Applications» Errachidia
April 26-28, 2017.

The scope of the ICAA-2017 conference encompasses, but is not limited to, the following areas :

- Associative algebra and its applications.
- Commutative algebra and its applications.
- Homological algebra and its applications.
- Number theory and its applications.
- Cryptography and its applications.
- Non-commutative algebra and its applications.
- Applications of algebra to real problems.

ORGANIZING COMMITTEE :

- A. MAMOUNI, FST Errachidia (Chair).
- M. TAOUS, FST Errachidia (Co-Chair).
- E. H. El KINANI, ENSAM Meknes.
- A. EL AZZOUZI, FP Taza.
- N. MAHDOU, FST Fez.
- L. OUKHTITE, FST Fez.
- A. RAADA, FST Errachidia.
- S. SALHI CRMEF, Rabat.
- M. TAMEKKANTE, FS Meknes
- A. ZEKHNINI, FP Nador
- Department of Mathematics Members, FST Errachidia.
- Association des Oeuvres Sociales de la FSTE : AOS-FSTE.

SCIENTIFIC COMMITTEE :

- M. ASHRAF, Aligarh Muslim University, Aligarh, India.
- A. AZIZI, FS Oujda, Oujda, Morocco.
- A. BADAWI, American University of Sharjah, Sharjah, UAE.
- M. FONTANA, University of degli Studi ROMA TRE, Roma, Italy.
- S. KABBAJ, KFU of Petroleum and Minerals, Dhahran, KSA.
- E. A. KAIDI, University of Almeria, Almeria, Spain.
- N. MAHDOU, FST of Fez, Fez, Morocco.
- C. MAIRE, University of Franche-Comté, Besançon, France.
- A. NITAJ, University of Caen, Caen, France.
- L. OUKHTITE, FST of Fez, Fez, Morocco.
- M. SAMMAN, Taibah University, Madina, KSA.
- M. SILES MOLINA, University of Malaga, Malaga, Spain.
- S. YASSEMI, University of Tehran, Tehran, Iran.

TECHNICAL COMMITTEE :

- O. AIT ZEMZAMI, FST Fez.
- Y. CHAOUKI, FST Errachidia.
- Y. DOUZI, FS Oujda.
- B. NEJJAR, FS Kenitra.
- F. ESSAHLAOUI, FST Errachidia.

The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

ICAA-2017's conference in Honor of Professor AMIN KAIDI

Preface

We are pleased to introduce the (ICAA 2017) acts, the summarize of abstracts of research that will be presented during the "The International Conference on Algebra And its Applications, Errachidia" on 26-28 April 2017. It is organized by the Faculty of Science and Technology of Errachidia.

The main goal of this conference is to gather the national and international scientific community of the domain to allow the moroccan researchers to exchange and to develop their knowledge of search in the field of algebra and its applications. It also aims to present recent progress and new trends in algebra and its applications. This will allow the participants to enrich their ideas and their knowledge regarding search in this domain. The 167 communications that will be presented can be categorized into variety areas in mathematics which include (but not limited to) :

- Associative algebra and its applications.
- Commutative algebra and its applications.
- Homological algebra and its applications.
- Number theory and its applications.
- Cryptography and its applications.
- Non-commutative algebra and its applications.
- Applications of algebra to real problems.

We would like to thank all participants for their contributions to the conference program. In particular, we thank the Faculty of Science and Technology of Errachidia and the Department of Mathematics of his head for their generous assistance. We also would like to acknowledge the financial and technical support from :

- Faculty of Science and Technology, Errachidia.
- University Moulay Ismail, Meknes.
- Centre National pour la Recherche Scientifique et Technique, Maroc.
- CRMEF de la région de Drâa-Tafilalet.
- Agence universitaire de la francophonie bureau maghreb.
- La région du Drâa-Tafilalet.

Contents

Plenary Speakers

M. Ashraf, Aligarh Muslim University, India.

Generalized Permuting n-Derivations in Prime Near-rings.
A. Azizi, Faculty of Sciences Oujda, Morocco.

Class number one problem for splitting fields of some polynomials.
A. Badawi, The American University of Sharjah, UAE. n-Absorbing ideals of commutative rings and recent progress on three conjectures: A survey.
A. Bayad, Université d'Évry Val d'Essonne, France. Some applications of L and zeta functions.
C. Maire, University of Franche-Comté, France.

Extensions of Number Fields and p-adic Lie groups.
N. Mahdou, Faculty of Sciences and Technology of Fez, Morocco.

About amalgamated algebras along an ideal.
A. Nitaj, University of Caen, France.

Post quantum cryptography
L. Oukhtite, Faculty of Sciences and Technology of Fez, Morocco. Some commutativity theorems in rings with involution.

Speakers

S. Abbad, Saad Dahlab University, Algeria.

Realizability of linear recurrence sequences.
H. Abdolzadeh, University of Mohaghegh, Ardabili, Iran.

Efficient presentations of finite 2-groups associated to a pro-2-group with coclass 3.
O. Ait Zemzami, Faculty of Science and Technology, Fez, Morocco. Study of the commutativity of certain rings with involution (With L. Oukhtite).
K. A. Al-Sharo, Al al-Bayt University, Jordan.

Unitar Multiplicatively Perfect numbers and their Generalizations.
A. Al-Dababseh, Al-Huseen Ben Talal University, Jordan.

On Finite Groups in which Semipermutability is a Transitive Relation.
S. Aldhafeeri, Public Authority for Applied Education, Kuwait.

On root-involutions and root-subgroups of certain Chevalley groups over finite fields of even characteristic.
B. N. Al-Hasanat, Al Hussein Bin Talal University, Ma'an, Jordan. Groups with primes order classes.
S. ALI, King Abdulaziz University, Jeddah, KSA.

Additive mappings in prime and semiprime rings with involution.
U. Ali, Bahauddin Zakariya University, Multan, Pakistan.

On the centralizer of generators in 3-Braid group (With A. Riaz and M. Arshad).
A. Al-Kenani, King Abdulaziz university, Jeddah, KSA . On the Near-Common Neighborhood Graph of a Graph.
M. Alami, CRMEF Fez, Morocco.

Types and uncountable orderings.
K. Alaoui Ismaili, Faculty of Science and Technology of Fez, Morocco.
Commutative Rings and Modules that are Nil ${ }_{*}$-coherent or Special
Nil $_{*}$-coherent (With D. E. Dobbs and N. Mahdou).
Y. Alkhezi, Public Authority of Applied Education, Kuwait.

On Generalized Quadrangles of Types $\bar{O}_{6}(2)$.
S. Aouissi, Faculty of Sciences, Oujda, Morocco.

On a conjecture of Franz Lemmermeyer (With M.C. Ismaili and M.Talbi).22

M. Aqalmoun, Faculty of Sciences, Meknes, Morocco.

On an extension of Serre's theorem. 23
N. Arega, Addis Ababa University, Ethiopia.

Two-sided residuation on topologizing filters on commutative rings (With J. van Den Berg).24

M. A. Raza, School of Basic and Applied Science, Galgotias, India.
A note on prime ring with generalized skew derivations. 25
W. Ashraf, Aligarh Muslim University, India.

Epimorphically Preserved Semigroup Identities.26

A. R. K. Assaad, Faculty of Science, Meknes, Morocco.
w-Modules over commutative rings. 27
H. Ayazul, Faculty of Sciences, KSA.

On countably generated extensions of $Q T A G$-modules.28
I. Bakhadach, Faculty of Sciences and Technology, Beni Mellal, Morocco. Solving the fuzzy polynomial equations by Fuzzy Structured Element Method (With S. Melliani).
C. Bakkari, Faculty of Sciences, Meknes, Morocco.

On Divided and Regular Divided Rings.
M. Bani Ata, Department of Mathematics-Kuwait, Salmiyiah, Kuwait. On 27-dimensional modules of type $E_{6}(K)$, for fields K of characteristic two. 31
K. Belhroukia, Ibn Tofail University, Kenitra, Morocco.

Transcendence and measure of transcendence of continued fractions (With A. Kacha).32
M. Ben Yakoub, Faculty of Sciences, Tetouan, Morocco. Hopficité des Modules (Survey).
S. Bendaoud, Faculty of Sciences and Technology, Errachidia, Morocco. An efficient Image Encryption Technique based ECC and DNA Computing (With F. Amounas and H. El Kinani).
M. Benoumhani, University of Sharjah, UAE.

On the unimodality of the open-set polynomials.
N. Berguellah, University of Constantine 1, Algeria.

Synchronization of a chaotic system by generalized active control.
F. Bernadette, University Cheikh Anta Diop, Dakar, Senegal.

On The Discriminator of Binary Recurrent Sequences.
Z. Bilgin, Yildiz Technical University, Istanbul, Turkey.
S-Noetherian property for noncommutative rings (With M. L. Reyes and Ü. Tekir).38
E. M. Bouba, Faculty of Science, Meknes, Morocco.
On pm ${ }^{+}$and finite character bi-amalgamation (With M. Tamekkante). 39
A. Boudjaj, Faculty of Sciences, Meknes, Morocco.

On spaces of topological complexity two.
M. Bouhada University of Sherbrooke, Canada. Geometry of quiver.41
Y. Bouramdane, Faculty of Sciences, Fez, Morocco.

Inner local spectral radius preservers of operator products (With M. E. El Kettani and H. Benbouziane).
M. B. Calci, Ankara University, Turkey.

Quasipolarity of a ring with respect to jacobson radical (With S. Halicioglu and A. Harmanci).
T. P. Calci, Ankara University, Turkey.

A generalization of j-quasipolar rings (With S. Halicioglu and A. Harmanci). 44
M. Chhiti, Faculty of Economics and Social Sciences, Fez, Morocco.

Some homological properties of amalgamated duplication of a ring along an ideal.
H. Claus, Centro Universitário UNIVATES, Centro de Ciências Exatas e Tecnológicas, Brazil.
Generalized semi-derivations and Generalized left semi-derivations of prime rings (With A. Mamouni).
H. Claus, Centro Universitário UNIVATES, Brazil.

Hydrological modeling and geotechnologies for analysis of susceptibility to floods and flash floods in places with low availability of altimetric and hydrological data: the case of the South Brazilian Forqueta River Basin (With G. G. de Oliveira).
E. Diaf, Pluridisciplinary Faculty of Nador, Morocco.

The Non-Commutative Geometry on the Compactification of Matrix Model.
A. Drhima, Faculty of Sciences, Meknes, Morocco.

Construction of Linear Codes related to Faithful Representations of Simple Lie Algebras (With M. Ait Ben Haddou and M. Najmeddine).
N. Eghbali University of Ardabil, Iran.

On the stability of (α, β, γ)-derivations on Lie algebras.
H. El alaoui, Faculty of Sciences, Fez, Morocco.

Weakly coherent proprety in amalgamated algebra along an ideal (With N. Mahdou and H. Mouanis).

Kh. El Asnaoui, Faculty of Sciences and Technics, Errachidia, Morocco. An Application of Linear Algebra to Image Compression (With H. Aksasse, M. Ouhda, B. Aksasse and M. Ouanan).
A. El Assioui, Faculty of Sciences, Fez, Morocco.

On the Structure of some finitely generated $R[G]$-modules (With M. E. Charkani).
M. El Badry, Faculty of Sciences of El Jadida, Morocco . Retractability and Co-retractabilitty and properties of endomorphism ring (With M. A. Abdallaoui and A. Haily).
S. El boukhari, Faculty of Sciences, Meknes, Morocco.

Indices of Rubin-Stark units.
A. El Habibi, Mohammed First University, Oujda, Morocco. Iwasawa Theory and Modular Forms (With Z. Bouazzaoui).
M. El Hassani, Sidi Mohamed Ben Abdellah University, FP Taza, Morocco. Euclidean Lattice and cryptography (With A. Chillal and A. Mouhib).
M. El Ouarrachi, Faculty of Science and Technology of, Fez, Morocco. On power serieswise Armendariz rings (With N. Mahdou).
R. El Khalfaoui, Faculty of Science and Technology of Fez, Morocco. When every pure ideal is projective (With N. Mahdou).
N. Elhajrat, Faculty of Science and Technology of Errachidia, Morocco. Increasing the Capacity of O-MIMO Systems using MGDM Technique (With O. EL Outassi and Y. Zouine).
M. Elomari, Sultan Moulay Slimane University, Ben Mellal, Morocco. Fuzzy subgroup of an additive fuzzy group (With S. Melliani).

El. Elqorachi, Ibn Zohr University, Agadir, Morocco.
The cosine-sine functional equation on a semigroup with an involutive automorphism (With O. Ajebbar).
I. Emilia Wijayanti, Universitas Gadjah Mada, Yogyakarta, Indonesia. On nice modules and its dualization.
F. Essahlaoui, Faculty of Sciences and Technology, Errachidia, Morocco. Emulate The Neural Network of Nano Arduino (With R. Skouri and A. EL Abbassi).
B. Fahid, Faculty of Sciences, Rabat, Morocco.

On some conjectures on some sorts of Jordan derivations (With D. Bennis).
O. Fall, Cheikh Anta Diop University, Dakar, Senegal.

On the determination of periods of linear recurrences (With O. Diankha, M. Mignotte and M. Sanghar).
E. Fliouet, CRMEF, Inezgane Agadir, Morocco.

Absolutely $l q$-finite extensions.
C. M. da Fonseca, Kuwait University, Kuwait.

Classification of pairs of linear mappings between two vector spaces and between their quotient space and subspace.68
N. Ghedbane, M'sila University, Algeria.

A Construction and Representation of some Variable Length Codes.

The International Conference on Algebra and its Applications

 26-28 April 2017, Errachidia, MoroccoM. Ghulam, Aligarh Muslim University, India.
Skew cyclic codes over a principal ideal ring (With M. Ashraf).

S. M. Reddy, Faculty of Science and Technology, Hyderabad, India. $L_{d}(1)$ is $\bigcirc(\log \log l o g d)$ for almost all square free d.
J. H'michane, Faculty of Sciences, Meknes, Morocco.

The Relationship between almost Dunford-Pettis operators and almost limited operators (With K. El Fahri).
A. Hafidi, Faculty of Sciences and Technology, Errachidia, Morocco.

Family of functional inequalities for the uniform measure.
A. Hamed, Gafsa Preparatory Engineering Institute, Monastir, Tunisia . On The Class Group of Formal Power Series Rings (With S. Hizem).74

A. Haouaoui, University of Monastir, Tunisia.
Zero-Divisor Graphs of Power Series Rings. 75
M. A. Idrissi, Faculty of Science and Technology, Fez, Morocco.

Additive mappings on a prime rings with involution (With L. Oukhtite).

G. Islem, University of Sciences and Technology Oran, Algeria.
Counting twin primes.
M. Issoual, Faculty of Science and Technology of Fez, Morocco.

On 2-absorbing and 2-absorbing primary ideals of commutative rings (With N. Mahdou).
L. Izelgue, Faculty of Sciences Semlalia, Marrakech, Morocco.

Bhargava Rings Over Subsets (With I. Alrasasi).
A. Jaballah University of Sharjah, UAE.

Counting the number of fuzzy topologies (With M. Benoumhani).
A. Jabeen, Aligarh Muslim University, India.

Additivity of Jordan higher derivable maps on alternative rings (With M. Ashraf).81
J.J. Jaraden, Al-Hussein Bin Talal University, Jordan.
p-local formations whose length ≤ 3.82
I. Jerrari, Faculty of Sciences, Oujda, Morocco.

On the structure of 2-group $\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ of some imaginary quartic number field K (With A. Azizi, A. Zekhnini, and M. Talbi).
A. Kacha, Ibn Tofail University, Kenitra, Morocco.

Abstract

Algebraic independence and algebraic independence measure of real numbers (With B. Ounir).

M. Kachad, Faculty of Sciences and Technology, Errachidia, Morocco.
Property $(U W \Pi)$ under perturbations.
H. I. Karakas, Baskent University, Ankara, Turkey.

Parametrizing MED semigroups with multiplicity up to five.
K. Driss, University Hassan II Casablanca, Morocco.

A note on finite products of fields.
M. Karmouni, Faculty of Sciences, Fez, Morocco.

Left and right spectra of operator matrices (With A. Tajmouati and M. Abkari).88
O. Khadir, Faculty of Sciences and Technology of Mohammedia, Morocco. The discrete logarithm problem modulo odd integers.
M. Khalifa, University of Sousse, Tunisia. Power series over strongly Hopfian bounded rings.
S. Khallouq, Faculty of Sciences and Technology of Errachidia, Morocco. Algebraic Schur complement approach for a finite volume discritization of a non linear 2d convection diffusion equation (With H. Belhadj).
M. A. Khan, Umar Musa Yar'adua University, Nigeria.

Some commutativity results for prime near- ring involving derivations (With
A. O. Aliyu).
N. M. Khan, Aligarh Muslim University, India.

Pure ideals in ordered Γ-semigroups and right regular weakly ordered Γ-semigroups (With A. Mahboob).
A. Khojali, Univesity of Mohaghegh Ardabili, Iran.

Gorenstein Injective Modules with respect to a semidualizing bi-module.
F. Kourki, CRMEF, Larach, Morocco.

On Some Steintiz Properties on finitely generated submodules of Free modules.95

K. Laala, Univresité de Bouira, Médéa, Algeria.

Généralisation d'une congruence d'Emma Lehmer (With B. Farid).
A. Lahssaini, Faculty of Sciences, Fez, Morocco.

Nonlinear commutant preservers (With H. Benbouziane, Y. Bouramdane, and M. E. Kettani).

The International Conference on Algebra and its Applications

 26-28 April 2017, Errachidia, MoroccoR. Larhrissi, Faculty of Science, Meknes, Morocco.
Zero-divisor graphs in commutative rings.
D. Lee, Seoul Women's University, Korea.
A computation in Temperley-Lieb algebras (With S. Kim).99

T-K. Lee, National Taiwan University, Taiwan.

Ad-nilpotent elements of semiprime rings with involution.
K. Louartiti, Faculty of Science, BEN M'SIK, Casablanca, Morocco. Global dimension of bi-amalgamated algebras (With M. Tamekkante).
M. Louzari, Faculty of sciences, Abdelmalek Essaadi University, Morocco. On (σ, δ)-skew McCoy modules.
A. Malek, University of Monastir, Tunisia.
S-prime ideals over S-Noetherian ring.
A. M. Tusif, Abdus Salam School, Pakistan.

Domains with invertible-radical factorization (With T. Dumitrescu).
A. Mamouni, Faculty of Sciences Ben M'Sik, Casablanca, Morocco. A New Framework for Zakat Calculation Using Mathematics Equations based on XML Technology (With A. Marzak and Y. RAKI).
$\begin{array}{ll}\text { L. Mao, Nanjing Institute of Technology, China. } & 106 \\ \text { Another Gorenstein analogue of flat modules. }\end{array}$
S. K. Maurya, IIT(BHU)Varanasi, India.

Generalization of Direct Injective modules (With A. J. GuptaI).107

Y. Mazigh, Faculty of Sciences, Meknes, Morocco.

Stark Units and Iwasawa Theory. 108
A. Mekrami, Faculty of Science Ain Chock, Casablanca, Morocco.
Théorème de Gel'fand-Mazur-Kaplansky.
S. Mennou, Faculty of Sciences, Kenitra, Morocco.

Approximation of a special function by the continued fractions (With A.
Chillali and A. Kacha).
A. Moutassim, CRMEF Settat, Morocco.

Real Pre-Hilbert Algebras Satisfying $\left\|x^{2}\right\|=\|x\|^{2}$.
M. R. Mozumder, Aligarh Muslim University, India.

Tri-additive Maps and Local Generalized (α, β)-Derivations (With M. R. Jamal).

M. M. Hasnain Central University, Delhi, India.
A Study of Non-Additive Maps in Γ-Structure of Rings and Near-rings.

N. Muthana, King Abdulaziz University, KSA.

On centrally-extended multiplicative (generalized)-(α, β)-derivations in semiprime rings (With Z. Alkhamisi).
B. Nejjar, Faculty of Sciences, Kenitra, Morocco. Continued Fraction Expansions of the quasi-arithmetic power means of positive matrices with parameter (p, α) (With A. Kacha and S. Salhi).
A. Nikseresht, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
Factorization with respect to Multiplicatively Closed Subsets Of a Ring Which Split a Module.
M. E. Ogiugo, University of Ibadan, Nigeria. Containment of fuzzy subgroups in a direct product of finite symmetric groups.
M. Ouhda, Faculty of Sciences, Errachidia, Morocco.

A New Smoothing Method Based on Diffusion Equation And K-means Clustring (With M. Ouanan and B. Aksasse).
M. Ould Said, Cheikh Anta Diop University, Dakar, Senegal.

Crypto Système à Clé Publique de McEliece basé sur les Produits Codes matrices.
Z. Oumazouz, Faculty of sciences, Oujda, Morocco.

On Parry Invariant of a Quintic Cyclic Field (With M. Ayadi).
S. Ouyahia, Houari boumediene University, Algeria.

Les groupes de Coxeter et le problème de distance d'inversion.
O. Ouzzaouit, Faculty of Sciences Semlalia, Marrakech, Morocco.

G-ring pairs: a generalization of a theorem of Dobbs (With L. Izelgue).
N. A. Ozkirisci, Yildiz Technical University, Istanbul, Turkey.

A Covering Condition for Primary Spectrum (With Z. Kllic and S. Koc).

S. A. Pary, Aligarh Muslim University, India.

Commutator having idempotent values with automorphism in semiprime rings.
M. K. Patel, NIT Nagaland, India.

On (Cofinitely) Weak $\operatorname{Rad}-\oplus$-Supplemented Modules.
G. Peruginelli, University of Padova, Italy.
An ultrametric space of valuation domains of the field of rational functions
A. Raji, Faculty of Sciences, Errachidia, Morocco.

Some conditions under which near-rings are rings (With L. Oukhtite).
$\begin{array}{ll}\text { A. Rani, Abdus Salam School, Pakistan. } & \\ \text { Perinormal rings with zero-divisors. } & 128\end{array}$
N. ur Rehman, Taibah University, KSA.

Identities with additive mappings in rings.
M. Rezzougui, Faculty of Sciences, Oujda, Morocco.

Sur la structure du groupe $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ pour certains corps quadratiques réels k (With A. Azizi, M. Taous and A. Zekhnini).
P. G. Romeo, Cochin University, India.

Biordered Sets from Involution Rings and Projection Lattice.
M. Sabirii, Faculty of Sciences, Errachidia, Morocco.

Maximal codes.
M. Sahmoudi, CRMEF Fez-Meknes, Morocco.

On Monigenity of cubic cyclic extension (With M. Zeriouh).
A. Saleem, University Abdul Wali Khan, Pakistan.

Generalized $\left(\in, \in \vee q_{k}\right)$-fuzzy subsemigroups and ideals in semigroups.
S. Salhi, CRMEF Rabat, Morocco.

Some properties of \star-prime rings.
A. Seddik, Unversity Hassan II, Casablanca, Morocco.

Construction of a strongly co-hopfian Abelian Which the tosion part isn't strongly co-hopfian.
A. Sendani, Faculty of Sciences, El Jadida, Morocco.

Anneaux pour lesqeules la réciproque du lemme de Schur est vérifiée (With M. Alaoui and A. Haily).137
T. Serraj, Faculty of Sciences, Oujda, Morocco.

Generating Elliptic Curves for Cryptography (With M. C. Ismaili and A. Azizi).
A. H. Shah, Central University of Kashmir, Srinagar, India.

Epimorphisms and Dominions.
M. A. Siddeeque, Aligarh Muslim University, India.

Abstract

Left generalized multiplicative derivations and commutativity of 3-prime near-rings (With M. Ashraf).

S. Sihem, University of Monastir, Tunisia.

On n-absorbing ideals of power series rings.
A. Soullami, Faculty of Sciences, Fez, Morocco.

Tower formula of Discriminant (With M. E. Charkani).
M. S. Sutrisno, University Airlangga, Surabaya, Indonesia.

Monotonicity of Finite Dirichlet's L Function.143
L. Szalay, Selye University, Slovakia.

Diophantine equations associated Fibonacci numbers.
N. Tahmi ENS, Alger, Algérie.

Le théorème de Batman sur la function PHI d'Euler (With A. Derbal).145
M. Talbi, Regional Center of Education and Training, Oujda, Morocco.

Sur le deuxième l-Groupe de classes de certains corps de nombres de type (l, l) et applications (With A. Derhem and M. Talbi).
MM. Talbi, Regional Center of Education and Training, Oujda, Morocco. Second 3-class groups of parametrized real quadratic fields (With D. C. Mayer and M. Talbi).
M. Tamekkante, Faculty of Science, Meknes, Morocco.

Note on the weak global dimension of coherent bi-amalgamations (With E. M. Bouba).
A. Tamoussit, Faculty of Sciences Semlalia, Marrakech, Morocco. On the flatness of $\operatorname{Int}(E, D)$ as a D-module (With L. Izelgue).
A. Toukmati, Faculty of Sciences, Fez, Morocco.

Some Sufficient conditions for M-hypercyclicity of C_{0}-semigroup (With A.
Tajmouati and A. El Bakkali).
R. Tribak, CRMEF, Tanger, Morocco.

On dual Baer modules and a generalization of dual Rickart modules.
R. Udhayakumar, Bannari Amman Institute of Technology, India. Stability of Gorenstein $g r$-flat modules.
B. Ungor, Ankara University, Turkey.

Semicommutativity of the Rings Relative to Prime Radical (With H. Kose). 153
S. Wahyuni, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia.

On Generalization of Schur's Lemma for Group Representation on Module over PIDs (With I. E. Wijayanti and N. Hijriati).

B. A. Wani, Aligarh Muslim Univesity, India.

On Commutativity of Rings and Banach Algebras with Generalized Derivations (With M. Ashraf).

W. Litegebe, University of Gondar, Ethiopia.

Functionals on \mathbb{R}-vector spaces.

A. Yousefian Daranii, Mohaghegh Ardabil Univesity, Iran.
 Prime preradicals and their generalizations.

Y. Zahir, Faculty of Science and Technology of Fez, Morocco.

On weakly prime and weakly semiprime ideals of commutative rings (With N. Mahdou).158
C. Zarhouti, Centre de Formation des Enseignants, Tanger, Maroc.

The uniqueness of complete norm topology in banach-jordan pairs (With H. Marhnine).
N. Zeidi, University Sfax, Tunisia.

A special chain theorem in the set of intermediate rings.
A. Zekhnin, University Sfax, Tunisia.

Capitulation of the 2-ideal classes of the field $\mathbb{Q}\left(\sqrt{2 q_{1} q_{2}}, i\right)$ of type $(2,2)$.
A. Zékiri, Faculty of Mathematics, Algiers, Algeria.

Three pearls of Bernoulli numbers (With F. Benchérif).
N. Zeyada, Jeddah University, KSA.

Modules Over a New Ring of Ponderation Functions (With M. Assal).
S. Ziani, ENSIAS, Rabat, Morocco.

Caractérisation des signaux fECG par le microscope mathématique : Transformée en ondelettes (With A. Jbari).

Plenary Speakers

Generalized permuting n-derivations in prime near-rings

Mohammad ASHRAF
Department of Mathematics Aligarh Muslim University
Aligarh -202002, India
mashraf80@hotmail.com

Abstract

Let \mathcal{N} be a left near-ring. It is said to be zero-symmetric if $0 x=0$ holds for all $x \in n$. Recall that in a left near ring $N x 0=0$ holds for all $x \in N$. Let n be a positive integer and $N^{n}=\mathcal{N} \times \mathcal{N} \times \cdots \times \mathcal{N}$ (n-copies).A map $D: N^{n} \longrightarrow \mathcal{N}$ is said to be permuting if the equation $D\left(x_{1}, x_{2}, \cdots, x_{n}\right)=$ $D\left(x_{\pi(1)}, x_{\pi(2)}, \cdots, x_{\pi(n)}\right)$ holds for all $x_{1}, x_{2}, \cdots, x_{n} \in \mathcal{N}$ and for every permutation $\pi \in S_{n}$, where S_{n} is the permutation group on $\{1,2, \cdots, n\}$. An n additive(i.e., additive in each argument) mapping $D: N^{n} \longrightarrow \mathcal{N}$ is called an n-derivation if

$D\left(x_{1}, x_{2}, \cdots, x_{i} x_{i}^{\prime}, \cdots, x_{n}\right)=D\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right) x_{i}^{\prime}+x_{i} D\left(x_{1}, x_{2}, \cdots, x_{i}^{\prime}, \cdots, x_{n}\right)$
hold for all $x_{1}, x_{2}, \cdots, x_{i}, x_{i}^{\prime}, \cdots, x_{n} \in \mathcal{N}$ and for all $i=1,2, \cdots, n$. An n-additive mapping $F: N^{n} \longrightarrow \mathcal{N}$ is called a generalized n-derivation if there exists an n derivation D on \mathcal{N} such that $F\left(x_{1}, x_{2}, \cdots, x_{i} x_{i}^{\prime}, \cdots, x_{n}\right)=F\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right) x_{i}^{\prime}+$ $x_{i} D\left(x_{1}, x_{2}, \cdots, x_{i}^{\prime}, \cdots, x_{n}\right)$ hold for all $x_{1}, x_{2}, \cdots, x_{i}, x_{i}^{\prime}, \cdots, x_{n} \in N$, and and for all $i=1,2, \cdots, n$. Moreover, if the map D (resp. F) is permuting, then all the above n relations are equivalent and D (resp. F) is called permuting n-derivation (resp. generalized permuting n-derivation) on \mathcal{N}. A generalized permuting 1derivation is a generalized derivation and generalized permuting 2 -derivation is a symmetric generalized bi-derivation. The concepts of symmetric bi-derivation was introduced in rings by G. Maksa and subsequently extended to n-derivation by Park, K.H. and Jung, Y.S.,[Commun. Korean Math. Soc. 25 , (2010), 19]. Motivated by these concepts we have introduced the notions of generalized n-derivations and generalized permuting n-derivations in near-rings. Further, these concepts have been extended to (φ, ψ) - n-derivation and generalized (φ, ψ) -n-derivation. Very recently several theorems obtained earlier for derivations and generalized derivations in near-rings have been generalized to (φ, ψ) - n-derivation and generalized (φ, ψ) - n-derivation (see Ashraf \& Aslam [Georgian Math. J. (2017)]. In the present talk, we give an up-to-date account of the work done by various authors in this direction.

[^0]
Class number one problem for splitting fields of some polynomials

Abdelmalek AZIZI
Department of Mathematics and informatics
Faculty of Sciences
Mohammed First University
Oujda
Morocco.
abdelmalekazizi@yahoo.fr

Abstract

Let n be an integer greater than or equal to $3, P(X)$ be an irreducible monic polynomial with coefficients in \mathbb{Z} and of degree n, K a field generated by a root of $P(X), L$ the normalizer of K, and d be the discriminant of $P(X)$. The discriminant d is equal to $$
d=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Where the α_{i} are the roots of $P(X)$. Then d is a square in L, so the quadratic field $F=\mathbb{Q}(\sqrt{d})$ is included in L. Let $d(K)$ be the discriminant of K, then $F=\mathbb{Q}(\sqrt{d})=\mathbb{Q}(\sqrt{d(K)})$. In my conference, I give an algebraic study of the class number one problem for the splitting field L (the condition for which the class number of L is equal to 1), in the case where the main condition " $d(K)$ is not square in \mathbb{Z} and is equal to the discriminant of $\mathbb{Q}(\sqrt{d(K)})$ " is satisfied.

References

[1] Steven Arno, M. L. Robinson and Ferrell S. Weeler; Imaginary quadratic field with small odd clkass number. Acta Arithmetica I.XXXIII. 4(1998).
[2] J. Elstodt, F. Grunewal and J. Mennicke; On unramified A_{n}-extension of quadratic number fields. Glasgow Math. J. 27(1985), 31-37.J.Math., 4 (1974), pp. 367-369.
[3] Venkatesan Guruswami, Constructions of Codes from Number Fields. AAECC-14, Melbourne, Australia, November 26-30, 2001.
[4] F. Hajir, on the class numbers of Hilbert class fields, Pacific Journal of Mathematics, Vol. 181, No. 3, 1997.
[5] Yasuhiro Kishi and Katsuya Miyake, Parametrization of Quadratic Fields Whose Class Numbers are Divisible by Three. Journal of Number Theory, 60, 209-217, (2000).
[6] Takeshi KONDO, Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan, Vol. 47, No. 1, 1995.
[7] W. Lenstra, Codes from Algebraic Number fields. In: M. Hazewinkel, J. K. Lenstra, L. G. L.T. Meertyens (eds), Mathematics and computer science II, Fundamental contributions in the H. Netherlands since 1945, CWI Monograph 4, pp.95-104, North -Holland, Amsterdam, 1986.
[8] Nicole, Unités et nombre de classes d'une extension galoisienne diédrale de Q. Séminaire de théorie des nombres de Grenoble,tome3(1973-1974), exp.no4,p. 1-22.
[9] J. Nakagawa, on the Galois group of number field with square free discriminant, comment. Math. Univ. St. Paul 37(1)(1988), 95-98.
[10] A. Movahhedi, Sur une classe d'extension non ramifiées. Acta Arithmetica, LIX. 1 (1991).
[11] H. Osada, The Galois group of the polynomials $X^{n}+a X+b$, J. Number theory 25(1987), 230-238.
[12] PARI/GP(version 2.7.5): http://pari.math.u-bordeaux.fr/
[13] Alexandre Temkine, Tours de corps de classes de Hilbert pour les corps globaux et applications. Thèse de Doctorat, Faculté des sciences de Luminy, Université de la Méditerranée, Aix-Marseille II, France, 2000.

n-Absorbing ideals of commutative rings and recent progress on three conjectures: A survey

Ayman BADAWI
Department of Mathematics \& Statistics
The American University of Sharjah
P.O. Box 26666, Sharjah
United Arab Emirates
abadawi@aus.edu

Abstract

Let R be a commutative ring with $1 \neq 0$. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. A more general concept than 2 -absorbing ideals is the concept of n-absorbing ideals. Let $n \geq 1$ be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1} a_{2} \cdots a_{n+1} \in I$, then there are n of the a_{i} 's whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1 -absorbing ideal of R). In this talk, we collect some old and recent results on n-absorbing ideals of commutative rings.

References

[1] D. F. Anderson and A. Badawi, On $((m, n)$-closed ideals of commutative rings. To appear in Journal of Algebra and Its Applications. DOI: 10.1142/S021949881750013X
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings. Comm. Algebra 39, 1646-1672(2011)
[3] A. Badawi, On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75, 417429(2007)
[4] Alison Elaine Becker, Results on n-Absorbing Ideals of Commutative Rings, M.S. thesis, University of Wisconsin-Milwaukee, Milwaukee, U. S. A., 2015
[5] P. J. Cahen, M. Fontana, S. Frisch, and S. Glaz, Open problems in commutative ring theory, Commutative Algebra. Springer, 353?-375(2014)
[6] Hyun Seung Choi and Andrew Walker, The radical of an n-absorbing ideal. arXiv:1610.10077 [math.AC] (2016)
[7] A. Yousefian Darani and E.R. Puczyowski, On 2-absorbing commutative semigroups and their applications to rings. Semigroup Forum 86, 83-91(2013)
[8] A. Laradji, On n-absorbing rings and ideals. To appear in Colloq. Math.
[9] H. Fazaeli Moghimi and S. Rahimi Naghani, On n-absorbing ideals and the n-Krull dimension of a commutative ring. J. Korean Math. Soc. 53, 1225-1236(2016)
[10] Hojjat Mostafanasab1 and A. Yousefian Darani, On n-absorbing ideals and two generalizations of semiprime ideals. (on line), to appear in Thai Journal of Mathematics.
[11] Peyman Nasehpour, On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_{R}(I)$ conjecture. Archivum Mathematicum (BRNO) 52, 71-78(2016)

Quelques applications des fonctions L et zêtas

Abdelmajid BAYAD

Université d'Évry Val d'Essonne
Département de Mathématiques
France.
abayad@maths.univ-evry.fr

Abstract. Dans cet exposé, nous étudions les propriétés analytiques et arithmétiques des fonctions zêtas et fonctions L suivantes:
(1) Zêta de Riemann, et
(2) Série et fonctions L de Dirichlet, et
(3) Fonctions zêta de Dedekind.

En particulier, nous verrons le théorème de Klingen-Siegel sur la rationalité des valeurs des zêtas de Dedekind associées aux corps de nombres totalement réels. Enfin nous donnons quelques applications.

Extensions of number fields and p-adic Lie groups

Christian MAIRE

Department of Mathematics
University of Franche-Comté
France
christian.maire@univ-fcomte.fr

Abstract

I will explain the philosophy of the theory of Galois representations and of the Fontaine-Mazur Conjecture (FM), specially when the image is potentially everywhere unramified. Then I will give some basic facts concerning p-adic Lie groups in relation with Galois representations. To conclude, I will give an improvement of a result of Nigel Boson (in 90's) in the unramified context of the FM Conjecture. This is a joint work with Hajir (UMASS).

About amalgamated algebras along an ideal

Najib MAHDOU
Department of Mathematics, Faculty of Sciences and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Morocco mahdou@hotmail.com

Dedicated to My Professor El Amin KAIDI

Abstract. Let A and B be two rings with unity, let J be an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. In this setting, we can consider the following subring of $A \times B$:

$$
A \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in A, j \in J\}
$$

called the amalgamation of A with B along J with respect to f introduced by M. D'Anna, C. A. Finocchiaro and M. Fontana in 2009. This Talk is a survey about the amalgamation $A \bowtie^{f} J$.

References

[1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bulletin of the Iranian Mathematical Society, Vol. 41 No. 3 (2015), 1-9.
[2] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra 43 (1) (2015) 249-261.
[3] M. D'Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, W. de Gruyter Publisher, Berlin (2009), 155-172.
[4] M. D'Anna, C. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (9) (2010) 1633-1641.
[5] M. D'Anna, C. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44(5) (2016), 1836-1851.
[6] M. Kabbour and N. Mahdou, Amalgamation of rings defined by Bézout-like conditions, Journal of Algebra and its Applications, Vol. 10 (2011) 1343-1350.
[7] N. Mahdou, A. Mimouni and M. A. Moutui, On almost valuation and almost Bézout rings, Comm. Algebra, 43 (2015) No. 1, 297-308.

Post quantum cryptography

Abderrahmane NITAJ
Département de Mathématiques
University of Caen Campus II Boulevard Maréchal Juin BP 5186-14032 Caen Cedex France. abderrahmane.nitaj@unicaen.fr

Abstract

A quantum computer with Shor's algorithm will solve the integer factorization and the discrete logarithm problems upon which most of the widely used cryptosystems such as RSA (Rivest, Shamir, Adleman) and ECC (elliptic curve cryptography) are based. Nevertheless, some cryptosystems running on conventional computers, such as NTRU, LWE and McEliece are still resisting to quantum computers. Such cryptosystems are good candidates for post quantum cryptography. In this talk, we will present the most promising post quantum cryptosystems and discuss their security.

Some commutativity theorems in rings with involution Lahcen OUKHTITE

Université S. M. B. Abdellah
Faculty of Sciences and Technology
Departement of Mathematics
Fez, Maroc
okhtitel@hotmail.com

Abstract

In this paper we investigate commutativity of ring R with involution * which admits a derivation satisfying certain algebraic identities. Some wellknown results characterizing commutativity of prime rings have been generalized. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

References

[1] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), 443-447.
[2] H. E. Bell and W. S. Martindale III, Centralizing mappings semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101.
[3] L. Oukhtite, H. E. Bell and A. Boua, Semigroup ideals and commutativity in 3-prime near rings, Comm. Algebra 43 (2015), no. 5, 1757-1770.
[4] V. De Filippis, L. Oukhtite and A. Mamouni, Generalized Jordan semiderivations in prime rings, Canad. Math. Bull. 58 (2015), no. 2, 263-270.
[5] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2014), no. 2, 225-232.
[6] L. Oukhtite and A. Mamouni, Derivations satisfying certain algebraic identities on Jordan ideals, Arab. J. Math. 1 (2012), no. 3, 341-346.
[7] L. Oukhtite, Posner's Second Theorem for Jordan ideals in rings with involution, Expo. Math. 29 (2011), no. 4, 415-419.
[8] L. Oukhtite, On Jordan ideals and derivations in rings with involution, Comment. Math. Univ. Carolin. 51 (2010), no. 3, 389-395.
[9] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[10] P. Semrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), 1051-1070.

Mathematics Subject Classification (2000): 16N60, 16W10, 16W25.
Key words: Prime ring, involution, commutativity, derivation.

Speakers

Realizability of linear recurrence sequences

Abbad SADJIA
University Saad Dahlab BLIDA 1
Algeria
abad_sadjia@yahoo.fr

Abstract

A sequence of non-negative integers $\left(u_{n}\right)_{n \geq 1}$ is called exactly realizable if there is a set X and a map $T: X \rightarrow X$ such that $u_{n}=\left|\operatorname{Per}_{n} T\right|$, That means T has exactly u_{n} points of period n. A combinatorial device gives necessary and sufficient conditions for a sequence of non-negative integers to counts the periodic points in a dynamical system. This is applied to study linear recurrence sequences which count periodic point.

References

[1] G.Everest, A.J.Van der Poorten, Y.Puri and T.ward. Integer Sequences and Periodic Points. Journal of Integer Sequences, Vol 5, 2002.
[2] D.Lind and B.Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge 1995.
[3] Y.P.Puri. Arithmetic of Periodic Points. PhD thesis, The University of East Anglia, 2000.
[4] Y.P.Puri and Thomas ward. Arithmetic and growth of periodic orbits. Journal of Integer Sequences, Vol 4, 2001.

[^1]
Efficient presentations of finite 2-groups associated to a pro-2-group with coclass 3

Hossein ABDOLZADEH
Department of Mathematics and Applications
Faculty of Sciences
University of Mohaghegh
Ardabili, P. O. Box 56199-11367 Ardabil Iran.
narmin.hsn@gmail.com

Abstract

There are 5 infinite pro-2-groups of coclass at most 3 and trivial Schur multiplicator. Three of them are metacyclic. One of the non-metacyclic pro-2-groups with trivial Schur multiplicator and coclass 3 is $$
S=\left\langle a, u \mid a^{2}=u^{4},\left(u^{2}\right)^{a}=u^{-2}\right\rangle .
$$

This pro-2-group has 5 infinite families of finite 2-groups, three of them contains finite 2-groups with trivial Schur multiplicator and two not. In this paper we write down efficient presentations of three of these 5 infinite families.

References

[1] H. Abdolzadeh and B. Eick, On efficient presentations for infinite sequences of 2-groups with fixed coclass, Algebra Colloq., 20(4) (2013) 561-572.
[2] M. J. Beetham and C. M. Campbell, A note on the Todd-Coxeter coset enumeration algorithm, P. Edinburgh Math. Soc., 20(1) (1976), 73-79.
[3] G. Havas, M. F. Newman, and E. A. O'Brien, Groups of deficiency zero, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25 (1994) 53-67.
[4] D. L. Johnson, Topics in the theory of group presentations, London Mathematical Society Lecture Note Series 42, Cambridge University Press, Cambridge, 1980.
[5] M.F. Newman, E.A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351(1) (1999) 131-169.
[6] R. G. Swan, Representations of polycyclic groups, Proc. Amer. Math. Soc., 18 (1967) 573 574.
[7] The GAP Group, GAP - Groups, Algorithms and Programming, Version 4.4 (avail- able from http://www.gap-system.org, 2005).

[^2]
Study of the commutativity of certain rings with involution
 Omar AIT ZEMZAMI
 Department of Mathematics
 Faculty of Science and Technology
 University S. M. Ben Abdellah Fez, Morocco
 omarzemzami@yahoo.fr (With L. Oukhtite)

Abstract

In this paper we investigate some commutativity criterions for a ring with involution in which generalized derivations satisfy certain algebraic identities. Moreover, we provide examples to show that the assumed restriction cannot be relaxed.

References

[1] M. Ashraf, A. Ali and S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31(3) (2007), 415-421.
[2] S. Ali and N. A. Dar, On *-centralizing mapping in rings with involution, Georgian Math. J. 21 (2014), no. 1, 25-28.
[3] M. Ashraf and N. Rehman, On commutativity of rings with derivation, Results Math. 42 (2002), no. 1-2, 3-8.
[4] N. A. Dar and S. Ali, On *-commuting mappings and derivations in rings with involution, Turk. J. Math. (2016), no. 40, 884-894.
[5] M. T. Kosan, T. K. Lee and Y. Zhou, Identities with Engel conditions on derivations , Monatsh. Math. 165 (2012), no. 3-4, 543-556.
[6] A. Mamouni and L. Oukhtite, Differential identities on Jordan ideals of rings with involution, Hacet. J. Math. Stat. 45 (1) (2016), 49-5.

[^3]
Unitar multiplicatively perfect numbers and their generalizations

Khaled AL-SHARO

Al al-Bayt University, Jordan sharo_kh@yahoo.com

Abstract

Unitary divisors (called block factors) were first considered by R. Vaidyanathaswamy [5]. The current terminology was introduced by E. Cohen $[2,3]$. Let the function $T^{*}(N)$ denote the product of all unitary divisors of N. A natural number N is called multiplicatively unitary k-perfect if $T^{*}(N)=N^{k}$. In [4], Sa'ndor introduced and characterized multiplicatively perfect numbers. The relevant results for multiplicatively unitary perfect numbers were obtained by Bege in [6]. In this paper we consider a wider set of multiplicatively unitary perfect numbers and we give a characteristic property for these numbers.

In 1971 (Peter Hagis [1]) introduced the concept of the unitary amicable as follows two positive integers are said to unitary amicable if the sum of the unitary divisors of of each is equal to their sum. In this paper we introduced the concept of unitary multiplicatively amicable and study some relevant properties.

A positive number that is greater(less) than the sum of all positive integers that are submultiples of it is called deficient(abundant). In this paper we also present the unitary multiplicatively abundancy index as a new tool to study unitary multiplicatively perfect numbers.

References

[1] Hagis, Peter, jr; Lord, Graham (1977). "Quasi-amicable numbers". Math. Comput. 31: 608611.
[2] Cohen, E., Arithmetical functions associated with the unitary divisors of an integer, Math. Z., 74 (1960), 66-80.
[3] Cohen, E., Unitary products of arithmetic functions, Acta Arith., 7 (1961/1962), 29-38.
[4] J. S'andor, On multiplicatively perfect numbers, J. Ineq. Pure Appl. Math., 2 (2001), Art. 3, 6pp.
[5] Vaidyanathaswamy, R., The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc., 33 (1931), 579-662.
[6] A. Bege, On multiplicatively unitary perfect numbers, Seminar on Fixed Point Theory, ClujNapoca, 2 (2001), 59-63.

[^4]
On finite groups in which semipermutability is a transitive relation

Awni AL-DABABSEH

Al-Huseen Ben Talal University, Jordan awni69yahoo.com

Abstract

Let G be a finite group and let H be a subgroup of G. H is said to be semipermutable in G if H permutes with every subgroup K of G with $(|H| ;|K|)=1$. A number of new characterizations of finite solvable $B T$-groups are considered, where a $B T$-group is one in which semipermutability is a transitive relation.

References

[1] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 47 (1975), 77-83.
[2] M. Assad, A. Ballester-Bolinches, J.C. Beidleman and R. Esteban-Romero, Some classes of Önite groups and mutually permutable products, J. Algebra, 319 (2008), 3343-3351.
[3] A. Ballester-Bolinches and R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups II, Bull. Aust. Math. Soc., 64 (2001), 479-486.
[4] A. Ballester-Bolinches and R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups, J. Algebra, 251 (2002), 727-738.
[5] J.C. Beidleman and H. Heineken, Mutually permutable subgroups and group classes, Arch. Math. (Basel), 85, (2005), 18-30.
[6] J.C. Beidleman and H. Heineken, Group classes and mutually permutable products, J. Algebra, 297 (2006), 409-416.
[7] J.C. Beidleman and H. Heineken, Totally permutable torsion subgroups, J. Group Theory, 2 (1999), 377-392.
[8] J.C. Beidleman, H. Heineken and M.F. Ragland, Strong Sylow basis and Mutually Permutable Products, submitted.
[9] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Berlin, 1992.
[10] O. Kegel, Sylow Gruppen und Subnormalteiler endlicher Gruppen, Math. Z.,78 (1962), 205-221.
[11] D.J.S. Robinson, A course in the theory of groups, second ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996.
[12] Lifang Wang, Yangming Li and Yanming Wang, Finite Groups in which S-Semipermutability is a Transitive Relation, International J. Algebra, 2 (2008), 143-152.
[13] Qinhai Zhang and Lifang Wang, The inflauence of s-semipermutable subgroups on finite groups, Acta Math. Sinica, 48 (1) (2005), 81-88.

[^5]
On root-involutions and root-subgroups of certain Chevalley groups over finite fields of even characteristic
 Shuaa ALDHAFEERI
 Public Authority for Applied Education
 Kuwait
 saldhafeeri@yahoo.com.

Abstract. In this talk we give a construction of certain Chevalley groups of type E_{6} using their root-involutions and root-subgroups.

[^6]
Groups with primes order classes

Bilal AL-HASANAT

Al Hussein Bin Talal University
Ma'an, Jordan
bilal_hasanat@yahoo.com

Abstract

The order classes of a finite group G denoted by $O C(G)$, can give certain and valuable properties of the group. Unfortunately, not many research illustrate the order classes of finite groups, it is correspond to many factors, such as the exponent of the group. Also the order of the group itself. Even that, the previous research determined the order classes for certain groups. Where the group structure showed these classes. On the contrary, this paper aims to configure some groups using their order classes. This will introduce a new notion in finite groups called POC-group "Primes Order Classes group". That is: A POC-group G is a finite group in which each $i \in O C(G)$ is a prime factor of $|G|$.

References

[1] Bilal Al-Hasanat, Ahmad, A. and Sulaiman, H. , The order classes of dihedral groups. Proceeding of Mathematical Sciences National Conference (SKSM21), AIP CONF PROC 1605, 551-556, (2014); doi: 10.1063/1.4887648.
[2] Bilal Al-Hasanat, Ahmad, A. and Sulaiman, H., Order classes of symmetric groups. International Journal of Applied Mathematics, Volume 26 No. 4, 501-510, (2013).
[3] Bilal Al-Hasanat, E. Al-Sarairah and Mahmoud Alhasanat, The order classes of 2-generator p-groups, Journal of Applied Mathematics, submitted, (2016).
[4] A.V. Vasilev, M.A. Grechkoseeva, V.D. Mazurov, Characterization of the finite simple groups by spectrum and order, Algebra Logic, 48: 385-409, (2009).

[^7]
Additive mappings in prime and semiprime rings with involution

Shakir ALI
Department of Mathematics
Faculty of Sciences
King Abdulaziz University
Jeddah, KSA
shakir50@rediffmail.com

Abstract

Let R be an associative ring with center $Z(R)$. For every associative ring R can be turned into a Lie ring by introducing a new product $[x, y]=x y-y x$, known as Lie product. So we may regard R simultaneously as an associative ring and as a Lie ring. A function $f: R \rightarrow R$ is called a $*$-centralizing on R if $\left[f(x), x^{*}\right] \in Z(R)$ holds for all $x \in R$. In the special case where $\left[f(x), x^{*}\right]=0$ for all $x \in R, f$ is said to be $*$-commuting on R.

In this talk, we will discuss the recent progress made on the topic and related areas. Moreover, some examples and counter examples will be discussed for questions raised naturally.

[^8]
On the centralizer of generators in 3-Braid group

Usman ALI
Center for Advanced Studies in Pure and Applied Mathematics Bahauddin Zakariya University, Multan, Pakistan.
Lahore, Pakistan.
uali@bzu.edu.pk
(With A. Riaz and M. Arshad)

Abstract

Let A and B be two rings, J an ideal of B and $f: A \longrightarrow B$ a ring homomorphism. The ring $A \bowtie^{f} J:=\{(a, f(a)+j \mid a \in A$, and $j \in J\}$ is called the amalgamation of A with B along J with respect to f. It was proposed by D'anna and Fontana, as an extension for the Nagata's idealization. In this paper we establish necessary and sufficient conditions under which $A \bowtie^{f} J$, and some related constructions, is either a Hilbert ring, a G-domain or a G-ring in the sense of Adams. By the way, we investigate G-ideals in the trivial ring extensions and amalgamations of rings. Our results provide original illustrating examples.

References

[1] J.C. Adams, Rings with a finitely generated total quotient ring, canad. math. Bull. Vol. 17(1), 1974.
[2] M. D'Anna, M. Fontana, An Amalgamated Duplication of a Ring Along an Ideal: The Basic Properties, J. Algebra Appl. (2007), 433-459.
[3] M. D'Anna, C.A. Finocchiaro, M. Fontana, Amalgamated Algebras Along an Ideal, in: Commutative Algebra and Applications, Proceedings of the fifth international Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, W. de Gruyter Publisher, Berlin, (2009), 155-172.
[4] M. D'Anna, C.A. Finocchiaro, M. Fontana, Properties of Prime Ideals in Amalgamated Algebras Along an Ideal, J. of Pure Appl. Algebra 214, (2010), 1633-1641.
[5] I. Kaplansky. Commutative Rings, The university of Chicago Press, Chicago 1974.

[^9]
On the near-common neighborhood graph of a graph

Ahmad AL-KENANI
King Abdulaziz university, Jeddah KSA
aalkenani10@hotmail.com

Abstract

The near common-neighborhood graph of a graph G, denoted by $n c n(G)$, is the graph on the some vertices of G, tow vertices being adjacent if there is at least one vertex in G not adjacent to both of them. A graph is called near-common neighborhood graph if it is the near-common neighborhood of some graph. In this paper we introduce the near-common neighborhood of a graph, the near common neighborhood graph, near-completeness number of a graph, basic properties of these new graphs are obtained and interesting results are established.

[^10]
Types and uncountable orderings

Mustapha ALAMI

Regional Centre of Trades Education and Training
Fez, Maroc
alami08@yahoo.fr

Abstract. We shall survey results about directed sets of uncountable size presenting a definite classification.

References

[1] J. L. Kelley, General topology, Van Nostrand Reinhold, New York, 1955.
[2] K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics 102, North-Holland, Amsterdam, 1983.
[3] S. Todorcevic, Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985), 711-723.

[^11]
Commutative rings and modules that are nil $_{*}$-coherent or special nil ${ }_{*}$-coherent

Karima ALAOUI ISMAILI
Department of Mathematics, Faculty of Sciences and Technology of Fez Box 2202, University S.M. Ben Abdellah Fez, Morocco
alaouikarima2012@hotmail.fr
(With D. E. Dobbs and N. Mahdou)

Abstract

Recently, Xiang and Ouyang defined a (commutative unital) ring R to be Nil_{*}-coherent if each finitely generated ideal of R that is contained in $\mathrm{Nil}(R)$ is a finitely presented R-module. We define and study Nil_{*}-coherent modules and special Nil_{*}-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil ${ }_{*}$ coherent ring and any special Nil_{*}-coherent ring is a Nil_{*}-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special $\mathrm{Nil}_{*}-$ coherent ring (regardless of whether it is coherent). Several examples of Nil_{*} coherent rings that are not special Nil_{*}-coherent rings are obtained as byproducts of our study of the transfer of the Nil_{*}-coherent and the special Nil_{*}-coherent properties to trivial ring extensions and amalgamated algebras.

References

1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (2015), 625-632.
2] K. Alaoui Ismaili and N. Mahdou, Finite conductor property in amalgamated algebra, J. Taibah University for Science 9 (2015), 332-339, Elsevier.
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), 3-56.
[4] H. Bass, Lectures on Topics in Algebraic K-Theory, Notes by A. Roy, Tata Institute of Fundamental Research, Bombay (Mumbai), 1967.

[^12]The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

On generalized quadrangles of types $\bar{O}_{6}(2)$ Yousuf ALKHEZI
Public Authority of Applied Education
Alardiya-Kuwait
ya.alkhezi@paaet.edu.kw

Abstract. The purpose of this talk is to discuss certain geometric properties of generalized quadrangles (Ω, \mathcal{L}) of type $\bar{O}_{6}(2)$, and show how these properties can be used to construct a Lie algebra of type $E_{6}(K)$ for fields of characteristic 2.

[^13]
On a conjecture of Franz Lemmermeyer Siham AOUISSI

ACSA Laboratory, Department of Mathematics and Computer Sciences FSO, Mohamed 1st University, Oujda, Morocco
(With M.C. Ismaili and M.Talbi)

Abstract

Recently Franz Lemmermeyer made a conjecture about the 3-class groups of certain pure cubic fields and their normal closures. This paper proves his conjecture and give a counterexamples of one case of his conjecture.

References

[1] P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226-239.
[2] R. Dedekind, Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. für reine und angewandte Mathematik, Bd. 121 (1900), 40-123.
[3] T. Honda, Pure cubic Fields whose Class Numbers are Multiples of Three, J.Number Theory 3 (1971), 7-12.
[4] The PARI Group, PARI/GP, Version 2.3.4, Bordeaux, 2008, http://pari.math.u-bordeaux.fr.
[5] M.C. Ismaili, Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur. Thèse de doctorat, Univ. Laval, Québec. (1992).

[^14]
On an extension of Serre's Theorem
 Mohamed AQALMOUN
 Département de Mathématiques et Informatique
 Faculty of Sciences, Université Moulay Ismail B.P. 11201 Zitoune, Meknes, Morocco maqalmoun@yahoo.fr

Abstract

The vanishing theorem of Serre says that if \mathcal{F} is a quasi-coherent sheaf on an affine scheme X then for any $i>0$ we have $H^{i}(X, \mathcal{F})=0$. In this work we want to weaken the condition " X is affine" by introducing a property on the sheaf \mathcal{F}. In particular we discover some criterion for affineness.

References

[1] M. F. Atiyah, I. G. MacDonald, Introduction to commutative algebra, Addison- Wesley, 1969.
[2] A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique,Inst. des Hautes Études de Science.
[3] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[4] Q. Liu, Algebraic Geometry and Arithmetic Curves,6th Edition, Oxfrord Gradu- ate Texts in Mathematics, 2002.
[5] C. A. Weibel, An Antroduction to Homological Algebra, Vol. 38, Cambridge Uni- versity Press, Cambridge, 1994.

[^15]
Two-sided residuation on topologizing filters on commutative rings

Nega AREGA
Addis Ababa University, Deaprtment of Mathematics
Addis Ababa, Ethiopia
(With J. van Den Berg)

Abstract

The set $F i l R_{R}$ of all right topologizing filters on a fixed but arbitrary ring R is both a complete lattice under inclusion, and a monoid with respect to an order compatible, but in general noncommutative binary operation :. It is known that the order dual $\left[F i l R_{R}\right]^{d u}$ of $F i l R_{R}$ is always left residuated, meaning, for each pair $\mathfrak{F}, \mathfrak{G} \in \operatorname{Fil}_{R}$ there exists a smallest filter $\mathfrak{H} \in$ Fil $_{R}$ such that $\mathfrak{H}: \mathfrak{G} \supseteq \mathfrak{F}$, but is not, in general, right residuated (there exists a smallest filter \mathfrak{H} such that $\mathfrak{G}: \mathfrak{H} \supseteq \mathfrak{F})$. The binary operation : is defined on $\left[F i l R_{R}\right]^{d u}$ as follows: $$
\mathfrak{F}: \mathfrak{G}\left\{K \leq R_{R}: \exists H \in \mathfrak{F} \text { such that } K \subseteq H \& h^{-1} K \in \mathfrak{G} \forall h \in H\right\}
$$

Thus the order dual $\left[\mathrm{Fil} R_{R}\right]^{d u}$ of $\mathrm{Fil} R_{R}$ has the structure of a lattice ordered monoid.

The importance of the structure $\operatorname{Fil} R_{R}$ (as a tool for analysing the ring R), lies in the fact that it encodes at least as much information about the ring R as does the ideal lattice $\operatorname{Id} R$, for there is a canonical structure preserving embedding (that is in general not onto) of $\operatorname{Id} R$ into $\left[\text { Fil } R_{R}\right]^{d u}$ that takes each $I \in \operatorname{Id} R$ onto the set of all right ideals of R containing I. However, whereas $\operatorname{Id} R$ enjoys residuation on both sides, $\left[\mathrm{Fil} R_{R}\right]^{d u}$, is in general, left but not right residuated.
It has been shown in [3] that for every right fully bounded noetherian ring R, $\left[\text { Fil } R_{R}\right]^{d u}$ is two-sided residuated and that a valuation domain will be too if and only if it is rank one discrete. If R is any ring for which (the monoid operation : on) Fil R_{R} is commutative, then obviously $\left[\text { Fil } R_{R}\right]^{\mathrm{du}}$ is two-sided residuated.

The purpose of this paper is to show that the converse is true whenever the ring R is commutative. That is, if R is a commutative ring for which [Fil R_{R}] du is two-sided residuated, then Fil R_{R} is commutative, that is to say, $\mathfrak{F}: \mathfrak{G}=\mathfrak{G}: \mathfrak{F}$ $\forall \mathfrak{F}, \mathfrak{G} \in$ Fil R_{R}. We also provide several non-torsion theoretic characterizations of the two-sided residuated property for a commutative ring R which show that the two-sided residuation property is equivalent to the conditions that the factor ring R / I satisfies finiteness conditions (ACC and DCC) on annihilator ideals and the right R-module $(R / I)_{R}$ satisfies finiteness conditions (ACC and DCC) on hereditary pretorsion submodules for all proper ideals I of R. We also proved that for a commutative semiartinian ring, artnianness is not a necessary condition for Fil R_{R} to be commutative.

References

[1] G.Birkhoff, on the lattice theory of idealsBulletin of the American Mathematical Society, (40)(1934), 613-619.
[2] R.P. Dilworth, Abstarct residuation over latticesBull.Amer.Math.Soc.(4), 44 (1938), 262-268.
[3] Nega Arega and John van den Berg, Two-sided residuation in the set of topologizing filters on a ring, Communications in Algebra,http://www.tandfonline.com/doi/full/10.1080/00927872.2016.1172624(2016).
[4] J.S. Golan, Linear Topologies on a ring: an overview, Pitman Research Notes Mathematics Series, Longman Scientific and Technical, New York, (159)1987.

A note on prime ring with generalized skew derivations

Mohd ARIF RAZA
School of Basic and Applied Science
Galgotias University
Greater Noida, India
arifraza03@gmail.com

Abstract

Let R be a prime ring, Q_{r} be the right Martindale quotient ring and C be the extended centroid of R. For any automorphism φ of R, an additive mapping $\delta: R \rightarrow R$ is said to be a φ-derivation or skew derivation of R with respect to φ if its satisfy $\delta(x y)=\delta(x) y+\varphi(x) \delta(y)$ for all $x, y \in R$. The standard identity s_{4} in four variables is defined by $s_{4}=\sum(-1)^{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)}$, where $(-1)^{\sigma}$ is the sign of a permutation σ of the symmetric group of degree 4. An additive mapping $\mathcal{G}: R \rightarrow R$ is a generalized skew derivation if $\mathcal{G}(x y)=\mathcal{G}(x) y+\varphi(x) \delta(y)$ for all $x, y \in R$, where δ is an associated skew derivation of \mathcal{G} and φ is an associated automorphism of \mathcal{G}. A skew derivation (δ, φ) of R is called Q-inner if its extension to Q is inner, that is, there exists $q \in Q$ such that $\delta(x)=\varphi(x) q-q x$ for all $x \in Q$, and otherwise it is Q-outer. Analogously, an automorphism φ of R is called inner, if when acting on $Q, \varphi(x)=g x g^{-1}$ for some invertible element $g \in Q$. When φ is not inner, then it is called an outer automorphism. An automorphism φ of Q is called Frobenius, if in the case of $\operatorname{char}(R)=0, \delta(\lambda)=\lambda$ for all $\lambda \in C$ and if, in the case of $\operatorname{char}(R)=p \geq 2, \varphi(\lambda)=\lambda^{p^{n}}$ for all $\lambda \in C$, where n is a fixed integer, positive, zero, or negative. In the present talk we discuss the behaviour of generalized skew derivation acting on multilinear polynomials in prime rings and obtain a description of the structure of R and information on the form of \mathcal{G} in terms of s_{4} and the multiplication by a specific element from the extended centroid of R.

[^16]
Epimorphically preserved semigroup identities

Wajih ASHRAF

Aligarh Muslim University
Aligarh, India
syedwajihashraf@gmail.com

Abstract

It is shown that a particular classes of semigroup identities whose both sides contain repeated variables and are preserved under epis in conjunction with all seminormal identities.

References

[1] Ashraf, W., Khan, N,M.: Epimorphism and heterotypical identities-II, J. Semigroup Theory Appl. Vol. 1 (2012), No. 1, 1-28.
[2] Ashraf, W., Khan, N,M.: On Epimorphisms and Semigroup identities, Algebra Letters Vol. 2 (2013).
[3] Isbell, J. R.: Epimorphisms and dominions, Proceedings of the conference on Categorical Algebra, La Jolla, 365, 232-246, Lange and Springer, Berlin 366.
[4] Khan, N. M.: On saturated permutative varieties and consequences of permutation identities, J. Austral. Math. Soc. (ser. A) 38(385), 186-37.
[5] Khan, N. M.: Epimorphically closed permutative varieties, Trans. Amer. Math. Soc. 287(385), 507-528.

w-Modules over commutative rings

Assaad Refat Abelmawla Khaled
Department of Mathematics
Faculty of Sciences
University Moulay Ismail
Meknes, Morocco
refat90@hotmail.com

Abstract. Let R be a commutative ring and let M be a GV-torsionfree R module. Then M is said to be a w-module if $\operatorname{Ext}_{R}^{1}(R / J, M)=0$ for any $J \in G V(R)$, and the w-envelope of M is defined by $M_{w}=\{x \in E(M) \mid J x \subseteq$ M for some $J \in G V(R)\}$.

References

[1] D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), no. 5, 2461-2475.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second Edition, SpringerVerlag, New York, 1992.
[3] S. El Baghdadi and S. Gabelli, w-divisorial domains, J. Algebra 285 (2005), no. 1, 335-355.
[4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[5] S. Glaz and W. V. Vasconcelos, Flat ideals, II, Manuscripta Math. 22 (1977), no. 4, 325-341.
[6] J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44.
[7] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
[8] B. G. Kang, Characterizations of Krull rings with zero divisors, J. Pure Appl. Algebra 146 (2000), no. 3, 283-290.

[^17]
On countably generated extensions of $Q T A G$-modules

Hasan AYAZUL
Department of Mathematics
Faculty of Sciences
Jazan University
Jazan, KSA
ayaz.maths@gmail.com

Abstract

Suppose M is a $Q T A G$-module with a submodule K such that M / K is countably generated that is, in other words, M is a countably generated extension of K. A problem of some module-theoretic interest is that of whether $K \in \mathcal{F}$, a class of $Q T A G$-modules, does imply that $M \in \mathcal{F}$. The aim of the present article is to settle the question for certain kinds of modules, when \mathcal{F} coincides with the class of all totally projective $Q T A G$-modules.

References

[1] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
[2] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
[3] A. Hasan, A note on $(\omega+1)$-projective $Q T A G$-modules, J. Adv. Res. Pure Math., (2016), doi: 10.5373/jarpm.
[4] A. Hasan, On generalized submodules of QTAG-modules, Georgian Math. J., 23(2), (2016), 221-226.
[5] M.Z. Khan, Modules behaving like torsion abelian groups II, Math. Japonica, 23(5), (1979), 509-516.
[6] A. Mehdi, M.Y. Abbasi and F. Mehdi, Nice decomposition series and rich modules,, South East Asian J. Math. \& Math. Sci., 4(1), (2005), 1-6.
[7] A. Mehdi, M.Y. Abbasi and F. Mehdi, On $(\omega+n)$-projective modules, Ganita Sandesh, 20(1), (2006), 27-32.
[8] A. Mehdi, F. Sikander and S.A.R.K. Naji, Generalizations of basic and large submodules of QTAG-modules, Afrika Mat., 25(4), (2014), 975-986.
[9] S.A.R.K. Naji, A study of different structures in QTAG-modules, Ph.D, Thesis, AMU (2010).
[10] F. Sikander, A. Hasan and A. Mehdi, On n-layered QTAG-modules, Bull. Math. Sci., 4(2014), 199-208.
[11] H. Mehran and S. Singh, On σ-pure submodules of QTAG-modules, Arch. Math., 46(1986), 501-510.
[12] S. Singh, Abelian groups like modules, Act. Math. Hung, 50(1987), 85-95.

[^18]
Solving the fuzzy polynomial equations by Fuzzy structured element method

Idris BAKHADACH
Faculty of Sciences and Technology
Beni-Mellal, Morocco idris.bakhadach@gmail.com

(With S. Melliani)

Abstract

In this paper, we define the fuzzy polynomial equation with fuzzy points, we investigate the resolution of fuzzy polynomial equations based on the fuzzy structured element, and we propose the method transforming the fuzzy polynomial equations into the parametric equations.

References

[1] Abbasbandy, S., Abbasbandy, S., Ezzati, R.R.: Newton's Method for Solving a System of Fuzzy Nonlinear Equations Applied Mathematics and Computation 175 (2006), 1189-1199.
[2] Buckley, J.J., Qu, Y.X. Solving of Linear and Quadratic Fuzzy Equations, Fuzzy Sets and Systems. 43 (1990),43-59
[3] Guo, S.Z.: Principle of Fuzzy Mathematical Analysis Based on Structured Element.Notheastern University Press, Shen Yang (2004)
[4] Guo, S.Z.: Transformation Group of Monotone Functions with Same Monotonic Form on [-1, 1 and Operations of Fuzzy NumbersFuzzy System and Mathematics 19 (2005), 105-110.

[^19]
On divided and regular divided rings Chahrazade BAKKARI
 Department of Mathematics and Computer Sciences
 Faculty of Sciences
 Moulay Ismail University
 Meknes, Morocco
 cbakkari@hotmail.com

 Dedicated to My Professor El Amin KAIDI.

 Dedicated to My Professor El Amin KAIDI.}

Abstract

In this paper, we study the notion of divided and regular divided rings. Then we establish the transfer of these notions to trivial ring extension and amalgamated algebras along an ideal. These results provide examples of non-divided regular divided rings. The article includes a brief discussion of the scope and precision of our results.

References

[1] A. Badawi; On divided commutative rings, Comm. Algebra, 27 (1999) 1465-1474.
[2] A. Badawi and D.E. Dobbs; On locally divided rings and going-down rings, Comm. Algebra, 29 (2001) 2805-2825.
[3] C. Bakkari, S. Kabbaj and N. Mahdou; Trivial extension defined by Prüfer condition, J. Pure Appl. Algebra, 214 (2010) 53-60.
[4] M. D'Anna, C. A Finocchiaro and M. Fontana; Properties of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), 1633-1641.
[5] D.E. Dobbs; Divided rings and going-down, Pac. J. Math., 67(2) (1976) 353-363.
[6] D.E. Dobbs and J. Shapiro; A generalization of divided domains and its connection to weak Baer going-down rings, Comm. Algebra., 37 (2009) 3553-3572.
[7] S. Glaz; Commutative Coherent Rings, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
[8] S. Kabbaj and N. Mahdou ; Trivial Extensions Defined by coherent-like condition, Comm. Algebra, 32 (10) (2004), 3937-3953.

[^20]
On 27-dimensional modules of type $E_{6}(K)$, for fields K of characteristic two

Mashhour BANI ATA
Department of Mathematics-Kuwait
Salmiyiah, Kuwait
mashhour_ibrahim@yahoo.com.

Abstract

The aim of this talk is to give an elementary and self-contained construction of Lie algebras $E_{6}(K)$ of type E_{6} over finite fields K of characteristic 2. If V is a 6 -dimensional vector space over \mathbb{F}_{2} with a non-degenerate quadratic bilinear form Q on V of minimal Witt-index, then the pair (Ω, \mathcal{L}) is a generalized quadrangle of type $O_{6}^{-}(2)$ where $\Omega=\{0 \neq x \in V \mid Q(x)=0, \operatorname{dim} X=2\}$ and $\mathcal{L}=\{X \leq V \mid Q(X)=0, \operatorname{dim} X=2\}$

The construction is mainly based on the notion of M-sets Δ introduced in [1] as a root-system of E_{6} and on the root-elements $M_{\Delta} \in \operatorname{End}_{K}(A)$ where A is a 27 -dimensional vector space over \mathbb{F}_{2} with basis $e_{x}, x \in \Omega$ and $\left\{\begin{array}{l}e_{x}, x \notin \Delta \\ e_{x} \sigma_{x}, x \in \Delta\end{array}\right.$ and σ_{s} is the reflection map adjoint with Δ.

References

[1] S. Aldhafeeri, M. Bani-Ata, On construction of Lie algebras of type $E_{6}(K)$, Beiträge zur Algebra und Geometrie. To appear.

[^21]
Transcendence and measure of transcendence of continued fractions

Kacem BELHROUKIA

Departement of Mathematics
Ibn Tofail University
Laboratory AMGNCA
Kenitra, Morocco
belhroukia.pc@gmail.com
(With A. Kacha)

Abstract

In this article, wegivesufficient conditions on the continued fractions A and Bso that the real numbers $\mathrm{A}, \mathrm{B}, A \pm B, \mathrm{AB}, \mathrm{A} / \mathrm{B}$ Can be transcendent. The usedmethodalsopermits us to calculate the measure of transcendence as well as a measure of algebraicindependence of transcendentalcontinued fractions.

References

[1] P. BUNDSCHUH, TrenscendentalContinued fractions ; J. Number Theory, 18, pp. 91-98.
[2] A. KACHA, Transcendance et fractions continues , Séminaire de Théorie des Nombres 1990, Université de Caen.
[3] A. KACHA Approximation algébrique de fractions continues, CR. Acad. Sci. Paris, t 317 Séeie 1, pp 17-20, (1993).
[4] G. ETTLER, On trenscendentalnumberswhosesum, difference, quotient and product are transcendentalnumbers. Math Student 41 (1973) , p. 339-384.
[5] G. NETTLER, Transcendentalcontinued fractions ; Journal of numberstheory 13, (1981) p. 456-462.
[6] T. OKANO, A note the transcendentalcontinued fractions ; Tokyo. J. Mth. Vol 10, (1987).
[7] K. F. ROTH, Rational approximations to algebricnumbers ; Mathematika, (1955), vol 2 ; pp. $1-20$.
[8] A. B. SHIDLOVSKI, Transcendentalnumbers ; Walter de Gryter (1989).
[9] W. B. JONES and W. J. THRON, Continued Fractions : AnalyticTheory and Aplications, Addisson-Wesley, Encyclopedia of Mathematics and its Applications, vol. 11, London, Amsterdam, Syndey, Tokyo (1980).

[^22]
Hopficité des modules (Survey)

L'Moufadal BEN YAKOUB

Abdelmalek Essaâdi University
Faculty of Sciences
Tetouan, Morocco

Résumé. Dans ce travail on donne les differentes notions de la hopficité des modules, les principaux propriétés, les differents résultats de tels modules et ses relations avec d'autres classes de modules plus larges.

[^23]
An efficient image encryption technique based ECC and DNA computing

Salma BENDAOUD
Moulay Ismail University
Faculty of Sciences and Technology
Errachidia, Morocco
salma.bendaoud2@gmail.com
(With F. Amounas and H. El Kinani)

Abstract

Due to the rapid growth of digital communication and multimedia application, security becomes an important issue in data exchange process over the wide network. Recently, Image encryption gained a lot of attention in the field of protection of multimedia data like images. In this paper, a new encryption image algorithm with two levels of security is proposed. The first level of security is provided by encoding the original image using DNA Computing technique. Further, the second level of security is provided by using ECC encryption and decryption algorithm. The novelty of the proposed method is advantages of both ECC and DNA computation is exploited in providing a high level of data security. Finally, the paper explains in detail the implementation of the proposed method using MATLAB R2015a.

References

[1] A. Gehani, T. LaBean, and J. Reif, DNA-Based Cryptography. Lec- ture Notes in Computer Science, Springer 2004
[2] Monica Borda and Olga Tornea, DNA secret writing techniques. IEEE conference, 2010.
[3] F. Amounas, E.H. El Kinani, A. Chillali, An application of discrete algorithms in asymmetric cryptography, International Mathematical Forum. (6), 49 (2011), 2409-2418.
[4] G.Z. Xiao, M.X. Lu, L. Qin, X.J. Lai, New field of cryptography: DNA cryptography, Chin. Sci. Bull. (51), 12 (2006), $1413 ? 1420$.
[5] F. Amounas, E.H. El Kinani, An Efficient Elliptic Curve Cryptography protocol Based on Matrices, IJEI. (1), 9 (2012), 49-54.
[6] F. Amounas, E.H. El Kinani, Fast mapping method based on matrix approach for elliptic curve cryptography, IJINS. (1), 2 (2012), 54-59.
[7] S. Jeevidha, Dr. M. S. Saleem Basha and Dr. P. Dhavachelvan, Analysis on DNA based cryptography to secure data transmission, IJCA. (29), 8 (2011).

[^24]The International Conference on Algebra and its Applications

On the unimodality of the open-set polynomials

Moussa BENOUMHANI

College of sciences
Department of Mathematics.
P.O.Box 27272. University of Sharjah.

Sharjah. U.A.E

Abstract

Let τ be a topology on the finite set X_{n}. We consider the open-set polynomial associated with the topology τ. Its coefficients a_{k} are the numbers of open sets of size $k=0, \ldots, n$. If the topology has a large number of open sets, then its open-set polynomial is determined explicitly and shown to be unimodal. In passing, we prove that this polynomial has real zeros only in the case where τ is the discrete topology. This answers a question raised by J. Brown.

[^25]
Synchronization of a chaotic system by generalized active control

Nour Elhouda BERGUELLAH

University of Constantine 1
Algeria
berguellahnour85@hotmail.com

Abstract

This paper designs a scheme for controlling a chaotic system to a period system using active control technique. We have discussed about the synchronization scheme between two identical coupled chaotic systems (Four-scroll attractor) via active control. Numerical Simulation results are presented to show the effectiveness of the proposed scheme.

References

[1] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems. Physical Review Letters. vol. 64 (1990).
[2] H. D. I. Abarbanel, N.F. Rulkov, et Mikhail M. Sushchik, Generalized synchronization of chaos: The auxiliary system approach, Physical review E, vol. 53, 4528-4535, 1995.
[3] G. Alvarez, L. Hernández, J. Muñoz, F. Montoya et S. Li., Security analysis of communication system based on the synchronization of different order chaotic systems Physics Letters A, vol. 34, 245-250, 2005.
[4] K.M. Cuomo, A.V. Oppenheim et S.H. Strogatz. Synchronization of Lorenzbased chaotic circuits with applications to communicationsIEEE Transactions on Circuits and Systems II, vol. 40 626-633, 1993
[5] S. Boccaletti ,J. Kurths, G. Osipovd et D.L. Valladares, C.S. Zhou The synchronization of chaotic systemsPhysics Reports, vol. 366 1-101,2002.

[^26]
On the discriminator of binary recurrent sequences

Bernadette FAYE

University Cheikh Anta Diop
Dakar, Senegal
bernadette@aims-senegal.org

Abstract. Given $k \geq 1$ consider the recurrent sequence determined by $u_{k}(n+$ $2)=(4 k+2) u_{k}(n+1)-u_{k}(n)$, with initial values $u_{k}(0)=0, \quad u_{k}(1)=1$. For $n=0,1,2,3, \ldots$ the discriminator function $\mathcal{D}_{k}(n)$ of $u_{k}(n)$ is defined as the smallest integer m such that $u_{0}, u_{1}, \ldots, u_{n-1}$ are pairewise incongruent modulo m. Put $\Delta=(4 k+2)^{2}-4>0$ and $\mathcal{P}_{\Delta}:=\{p: p \mid \Delta\}$. We prove that, for all $k=2, \ldots, 6$, the value of the discriminator $\mathcal{D}_{k}(n)$ is the sequence of the smallest integer greater or equal to n with prime factors only in \mathcal{P}_{Δ}. We also classify all binary recurrent sequence $\left\{u_{n}\right\}_{n \geq 0}$ consisting of different integer terms such that $\mathcal{D}_{u}\left(2^{e}\right)=2^{e}$ for $e \geq 1$. This is a joint work with Pieter Moree from Max Planck Institute for Mathematics.

S-Noetherian property for noncommutative rings Zehra BİLGİN
Department of Mathematics, Yildiz Technical University
Istanbul, Turkey
zbilgin@yildiz.edu.tr
(With M. L. Reyes and Ü. Tekir)

Abstract

In [6], D. D. Anderson and T. Dumitrescu defined S-Noetherian rings for commutative rings with identity as a generalization of Noetherian rings and proved a generalization of Cohen's well-known theorem: A commutative ring with identity is Noetherian if and only if each of its prime ideals is finitely generated, [6]. In [1] and [2], Cohen's Theorem is extended to noncommutative context using completely prime right ideals and Oka families of right ideals. In this work, we define right S-Noetherian property for noncommutative rings and examine some properties of right S-Noetherian rings. We apply the facts on Oka families of right ideals to generalize Cohen's Theorem to right S-Noetherian rings. We use Oka families of right ideals and point annihilator sets to give two characterizations of right S-Noetherian rings in terms of completely prime right ideals.

References

[1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings. Comm. Algebra 30 (2002) no. 9, 4407-4416.
[2] I. S. Cohen, Commutative rings with restricted minimum condition. Duke Math. J. 17 (1950) no. 1, 27-42.
[3] M. L. Reyes, A one-sided prime ideal principle for noncommutative rings. J. Algebra Appl. 9 (2010) no. 6, 877-919.
[4] M. L. Reyes, Noncommutative generalizations of theorems of Cohen and Kaplansky. Algebr. Represent. Theory 15 (2012) no. 5, 933-975.

[^27]
On pm^{+}and finite character bi-amalgamation

El Mehdi BOUBA

Department of Mathematics, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
mehdi8bouba@hotmail.fr
(With M. Tamekkante)

Abstract. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. The bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect of (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) / a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\}
$$

In this paper, we study the transference of $p m^{+}, p m$ and finite character ringproperties in the bi-amalgamation.

References

[1] D.D. Anderson and V.P. Camillo, Commutative rings whose elements are a sum ofa unit and an idempotent, Comm. Algebra 30 (2002), no. 7, 3327-3336.
[2] W.D. Burgess and R. Raphael, On commutative clean rings and pm rings, Contemp. Math. 480 (2009), 35-55.
[3] M. Chiti, N.Mahdou, Some homological properties of an amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), no. 2, 507-515.
[4] M. Contessa, On pm-rings, Comm. Algebra 10 (1982), no. 1, 93-108.
[5] M. Contessa, On certain classes of pm-rings, Comm. Algebra 12 (1984), no. 12, 1447-1469.
[6] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252.
[7] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459.
[8] M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, 2009, 155-172.
[9] M. D'Anna, C. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641.
[10] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459-466.
[11] L. Gillman and M. Jerison, Rings of Continuous Functions, Grad. Texts in Math. 43, SpringerVerlag, Berlin, 1976.
[12] M. Griffin, Rings of Krull type , J. Reine Angew. Math. 229 (1968), 1-27.
[13] S. Kabbaj, K. Louartiti and M. Tamekkante, Bi-amalgamation alge-bras along ideals, J. Commut. Algebra, to appear (arXiv:1407.7074v1).
[14] M. D. Larsen, Prufer rings of finite character, J. Reine Angew. Math. 247 (1971), 92-96.
[15] E. Matlis, Cotorsion modules, Memoirs Amer. Math. Soc., no. 49, 1964.
[16] E. Matlis, Decomposables modules, Trans. Amer. Math. Soc. 125 (1966), 147-179.
[17] C. J. Mulvey, A generalization of Gelfand duality, J. Algebra 56 (1979), 499-505.
[18] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 278-279.
[19] B. Olberding, Characterizations and constructions of h-local domains, in: Models, modules and abelian groups, Walter de Gruyter, Berlin, 2008, 385-406.

[^28]
On spaces of topological complexity two

Azzeddine BOUDJAJ

Université Moulay Ismail
Faculty of Sciences
Meknes, Morocco
azze89ddine@gmail.com

Abstract

In this talk I consider the rational interpretation of results about the classification of minimal cell structures of spaces of topological complexity two under some hypotheses on their graded cohomological algebra. This continuous method used by M.Grant et al. in [5].

References

[1] G. A. Bredon, Topology and Geometry, GTM 139 (1993) Springer-Verlag, New york.
[2] M. Farber, Invitation to Topological Robotics, European Mathematical Soceity (2008)..
[3] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221.
[4] J. González, M. Grant, L. Vandembroucq, Hopf invariants for sectional category with applications to topological robotics. arXiv : 1405.6891.
[5] M.Grant, G. Lupton and J. Oprea, Spaces of topological complexity one, Homology Homotopy Appl. 15 (2013), No. 2, 73-81.
[6] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.
[7] C.R.F. Maunder, Algebraic Topology. Cambridge University Press 1980.
[8] Robert M.Switzer, Algebraic Topology Homology and Homotopy, reprint of the 1975 Edition.

[^29]
Geometry of quiver

Mohammed BOUHADA

University of Sherbrooke
Canada
mohammed.bouhada@usherbrooke.ca

Abstract

The aim of the representation theory of algebras is to understand the category of modules over a given associative unital k-algebra A, where k is a commutative ring. In this talk, I will restrict to the case that A is finitedimensional over an algebraically closed field k, and I will focus on the geometrical aspects of representations of quivers.

References

[1] Abeasis.S, Fra.A.del, Kraft.H, The geometry of representations of \mathbb{A}_{m},AMS, (1981), 401-418.
[2] Eisenbud, David, Commutative Algebra with a View Toward Algebraic GeometrySpringerVerlag New York,1995.
[3] G. Bobinski, G. Zwara, Normality of orbit closures for Dynkin quivers of type An, Manuscripta Math., 105 (2001), pp. 103-109.
[4] G. Bobinski, G. Zwara Schubert varieties and representations of Dynkin quivers, Colloq. Math., 94 (2002), pp. 285-309.
[5] K. Bongartz, A geometric version of the Morita equivalenceJ. Algebra, 139 (1991), pp. 159-171.

Inner local spectral radius preservers of operator products Youssef BOURAMDANE

Faculty of Sciences DharMahraz Fez

University Sidi Mohammed BenAbdellah
Fez, Morocco
ybouramdane@gmail.com
(With M. E. El Kettani and H. Benbouziane)

Abstract

Let $\mathcal{B}(X)$ be the algebra of all bounded linear operators on an infinite dimensional complex Banach space X. For an operator $T \in \mathcal{B}(X)$ and a vector $x \in X$, let $\iota_{T}(x)$ denote the inner local spectral radius of T at x. For $x_{0} \in X$ nonzero fixed vector we determine the form of surjective maps preserving the inner local spectral radius of $T S+R$ for all T, S and $R \in \mathcal{B}(X)$. We characterize also maps φ from $\mathcal{B}(X)$ into itself satisfying $\iota_{\varphi(T) \varphi(S)}(x)=\iota_{T S}(x)$ for all $T, S \in \mathcal{B}(X)$ and $x \in X$.

References

[1] Aupetit, B. :A primer on spectral theory. Springer, New York (1991).
[2] M. Bendaoud, M. Jabbar, M. Sarih : Preservers of local spectra of operator products, Linear Multi-linear Algebra 63(4)(2015) 806-819.
[3] A. Bourhim, J. Mashreghi : Maps preserving the local spectrum of product of operators, Glasg. Math. J. 215 (2015).
[4] M. Ech-chérif El Kettani and H. Benbouziane: Surjective maps preserving local spectral radius, International Mathematical Forum. 9 (2014), no. 11, 515-522.
[5] El Kettani, M.E., Benbouziane, H.: Additive maps preserving operators of inner local spectral radius zero. Rendiconti del Circolo Matematico di Palermo 63(2), 311-316 (2014).
[6] T. Jari: Nonlinear maps preserving the inner local spectral radius, Rendiconti del Circolo Matematico di Palermo, 64 (2015) 67-76.

[^30]
Quasipolarity of a ring with respect to jacobson radical

Mete Burak CALCI

Ankara University, Turkey
mburakcalci@gmail.com
(With S. Halicioglu and A. Harmanci)

Abstract

In this paper, we introduce a class of J-quasipolar rings. Let R be a ring with identity. An element a of a ring R is called weakly J-quasipolar if there exists $p^{2}=p \in \operatorname{comm}^{2}(a)$ such that $a+p$ or $a-p$ are contained in $J(R)$ and the ring R is called weakly J-quasipolar if every element of R is weakly J quasipolar. We give many characterizations and investigate general properties of weakly J-quasipolar rings. If R is a weakly J-quasipolar ring, then we show that (1) $R / J(R)$ is weakly J-quasipolar, (2) $R / J(R)$ is commutative, (3) $R / J(R)$ is reduced. We use weakly J-quasipolar rings to obtain more results for J-quasipolar rings. We prove that the class of weakly J-quasipolar rings lies between the class of J-quasipolar rings and the class of quasipolar rings. Among others it is shown that a ring R is abelian weakly J-quasipolar if and only if R is uniquely clean.

[^31]
A generalization of j-quasipolar rings

Tugçe CALCI

Ankara University, Turkey
tcalci@ankara.edu.tr
(With S. Halicioglu and A. Harmanci)

Abstract

In this paper, we introduce a class of quasipolar rings which is a generalization of J-quasipolar rings. Let R be a ring with identity. An element $a \in R$ is called δ-quasipolar if there exists $p^{2}=p \in \operatorname{comm}^{2}(a)$ such that $a+p$ is contained in $\delta(R)$, and the ring R is called δ-quasipolar if every element of R is δ-quasipolar. We use δ-quasipolar rings to extend some results of J-quasipolar rings. Then some of the main results of J-quasipolar rings are special cases of our results for this general setting. We give many characterizations and investigate general properties of δ-quasipolar rings.

[^32]
Some homological properties of amalgamated duplication of a ring along an ideal

Mohamed CHHITI
Faculty of Economics and Social Sciences,
University S. M. Ben Abdellah
Fez, Morocco
chhiti.med@hotmail.com

Dedicated to My Professor El Amin KAIDI

Abstract

We investigate the transfer of some homological properties from a ring R to his amalgamated duplication along some ideal I of $R R \bowtie I$, and then generate new and original families of rings with these properties.

References

[1] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252.
[2] M. D'Anna, A construction of Gorenstein rings, J. Algebra. 306 (2006), no. 2, 507-519.
[3] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459.
[4] M. Chhiti, and N. Mahdou, Some homological properties of amalgamated duplication of a ring along an ideal,Bultin Iranian Maths,Sos.vol38.No.2(2012)pp507-512.
[5] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra 43 (1) (2015) 249-261.
[6] M. Chhiti, N. Mahdou and M.Tamekkante, Self injective amalgamated algebras along an ideal, Journal of Algebra and its applications, Volume 12. No 7 (2013).
[7] M. Chhiti, N. Mahdou and M.Tamekkante, Clean property in amalgamated algebras along an ideal, Hacettepe Journal of Mathematics and Statistics Volume 44 (1) (2015), 41-49.

[^33]
Generalized semi-derivations and generalized left semi-derivations of prime rings

Claus HAETINGER
Centro Universitário UNIVATES, Centro de Ciências Exatas e Tecnológicas Lajeado-RS, Brazil chaet@univates.br
(With A. Mamouni)
Dedicated to our Professor El Amin KAIDI

Abstract

In that paper there is explored the commutativity of a prime ring in which generalized semi-derivations satisfy certain differential identities. Furthermore, we have introduced the notion of generalized left semi-derivations in a noncommutaive ring R and the main results state some generalizations of recent results due to Chan, Jun, Jung and Firat.

References

[1] M. Ashraf and S. Ali, On generalized Jordan left derivation in rings, Bull. Korean Math. Soc. 45 (2) (2008), 253-261.
[2] J. Bergen, Derivations in prime rings, Canad. Math. Bull. 26 (1983), 267-270.
[3] M. Bres̆ar, On a generalization of the notation of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649.
[4] M. Bres̆ar, Semi-derivation of prime rings, Proc. Amer. Math. Soc. 108 (4) (1990), 859-860.
[5] J. C. Chang, On semi-derivation on prime rings, Chinese J. Math., 12 (1984), 225-262.
[6] J. C. Chang, K. W. Jun, Y. S. Jung, On derivation in Banach algebras, Bull. Korean Math. Doc., 39 (4) (2002), 635-643.
[7] V. De Filippis, A. Mamouni, and L. Oukhtite, Semi-derivations satisfying certain algebraic identities on Jordan ideals, ISRN Algebra (2013) doi: 10.1155/2013/738368, 1-7.
[8] A. Firat, Some results for semi-derivations of prime rings, Int. J. of Pure and Applied Math., 28 (3) (2006), 363-368.
[9] K. Kaya, O. Golbasi, N. Aydin, Some results for generalized Lie ideals in prime rings with derivation II, Applied Mathematics, E-Notes, 1 (2001), 24-30.
[10] L. Oukhtite and L. Taoufiq, Left derivation in σ-prime rings, Int. J. Alg., 1 (1) (2007), 31-36.

[^34]
Hydrological modeling and geotechnologies for analysis of susceptibility to floods and flash floods in places with low availability of altimetric and hydrological data: the case of the South Brazilian Forqueta River Basin

Claus HAETINGER
Centro Universitário UNIVATES, Centro de Ciências Exatas e Tecnológicas Programa de Pós-Graduação em Ambiente e Desenvolvimento Lajeado-RS, Brazil
chaet@univates.br
(With G. G. de Oliveira)

Abstract

Natural disasters very often have caused deep impacts on human society. It is estimated that in the last decade about 1.3 billion people around the globe have been affected by hydrometeorological events. Considering the limited investments in hydrological monitoring and topographical surveys in Brazil, it becomes necessary the development of alternative methods to the traditional identification of susceptible areas to floods. The main purpose of this study is to present an approach to the identification of susceptible areas to floods, adapted to regions with low availability of data, integrating hydrological models and geotechnologies with the use of free data available in a large scale. The study was applied to the Forqueta River Basin, which has been affected by an intense flood in 2010. The identification of susceptible areas to floods in the Forqueta River Basin has been conducted by the utilization of a modelling method that integrates the hydrological simulation and the use of geotechnologies. The definition of extreme rainfall in return periods (RP) of 10,30 and 100 years was carried out by using an intensity-duration-frequency equation. Shuttle Radar Topography Mission data were used to the delimitation of the basins and rivers. The Soil Conservation Service method was used for the transformation of rain runoff, while the spread of river flood wave was conducted by Muskingum-Cunge model. The extreme precipitation scenario for a period of 25 hours ranged from $123 m m$ (RP10) to 179 mm (RP100). Hydrological simulation revealed that the maximum flow rates can exceed $8.000 \mathrm{~m}^{3} . \mathrm{s}^{-1}$ at the Forqueta River outfall, with wet area section larger than $5.000 \mathrm{~m}^{2}$ and waters rising more than 10 m on the average. About 2% of the basin showed some degree of susceptibility (RP100), adding up to $53 \mathrm{~km}^{2}$ of wetlands. The approach has shown consistent results concerning to flows and flood levels. One may conclude that the same data set could be applied to other fields of study, for regional hydrological characterization of susceptibility to disasters.

References

[1] ANA - Agência Nacional de Águas, Sistema de Informações Hidrológicas HIDROWEB. 2016. Avaliable at http://hidroweb.ana.gov.br/default.asp. Accessed in: jun. $15^{t h}, 2016$.
[2] P.D. Bates, Integrating remote sensing data with flood inundation models: how far have we got? Hydrological Processes 26 (16) (2012), 2515-2521.

[^35]
The non-commutative geometry on the compactification of matrix model

Elyamani DIAF
Departement of Physics
Physics Group, OLMAN-RL laboratory
Pluridisciplinary Faculty of Nador
Mohammed First University
Morocoo
eldiaf@gmail.com

Abstract

We review brieflly the main lines of the toroidal compactification of the IKKT model. This study, which is also valid for the BFSS matrix theory, allow us to give a reformulation of the defining constraint equation of Banks et al, useful when we showing the compactification on S_{2} and F_{0}.

References

[1] Banks T, Fichler W, Shenker S H and Susskind L 1997 Phys. Rev. D 55 5112-28 (Banks T, Fichler W, Shenker S H and Susskind L 1996 Preprint hep-th/9610043)
[2] Ishibashi N, Kawai H, Kitazawa Y and Tsuchiya A 1997 Nucl. Phys. B 498 467-91
[3] Connes A, Douglas M R and Schwarz A 1998 J. High Energy Phys. JHEP02(1998)003 (Connes A, Douglas M R and Schwarz A 1997 Preprint hep-th 9711162, IHES-P-97-82, RU-97-94)
[4] Douglas M R and Hull C M 1998 J. High Energy Phys. JHEP02(1998)008
[5] Moore G 1993 Finite in all direction Preprint hep-th 9305193
[6] Schwarz A 1998 Nucl. Phys. B 534720
[7] Gukov S, Rangamani M and Witten E 1998 J. High Energy Phys. JHEP12(1998)025
[8] Kim N 1999 Orientifolds of matrix theory and non-commutative geometry Preprint QMW-PH-98-44, hepth- 9901008
[9] Seiberg N 1997 Phys. Lett. B 408 98-104 Banks T, Seiberg N and Silverstein E 1997 Phys. Lett. B 401 30-7
[10] Katz S, Klemm A and Vafa C 1996 Geometric engineering of quantum field theory Preprint hep-th-9609293
[11] Galperin A, Ivanov E, Kalitzin S, Ogievetsky V and Sokatchev E 1984 Class. Quantum Grav. 1496
[12] Galperin A, Ivanov E, Ogievetsky V and Sokatchev E 1987 Class. Quantum Grav. 41255 Galperin A, Ivanov E, Ogievetsky V and Sokatchev E 1986 Commun. Math. Phys. 103515
[13] Hermann Schulz-Baldes, Jahresber Dtsch Math-Ver 118, 247-273 (2016)
[14] Shane Farnsworth, Latham Boyle, New J. Phys. 17, 023021 (2015)

[^36]
Construction of linear codes related to faithful representations of simple Lie algebras

Asmae DRHIMA

Faculty of Sciences
Meknes, Morocco
drhima.asmae@gmail.com
(With M. Ait Ben Haddou and M. Najmeddine)

Abstract

Using the finite-dimensional faithful representations of simple Lie algebras, we construct linear codes over the ring of integers. We exemplify the construction for codes related to the adjoint representation of simple Lie algebras of type $A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2}. In determining the minimal distance of this codes, we have used the generator matrix.

References

[1] X. Xu, Representations of Lie Algebras and Coding Theory. Journal of Lie Theory 22 (2012), 647-682.
[2] N.Bourbaki, Groupes et algèbres de Lie. Chapitres 4 à 6, Springer. Masson, Paris 1981.
[3] J.E.Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin 1980.
[4] W.C.Huffman and V.Pless, Fundamentals of Error Correcting Codes, Cambridge University Press 2003.

[^37]
On the stability of (α, β, γ)-derivations on Lie algebras

Nasrin EGHBALI

Department of Mathematics
Facualty of Mathematical Sciences
University of Mohaghegh Ardabil, Iran
nasrineghbali@gmail.com

Abstract. A Lie algebra A is an algebra endowed with the Lie product

$$
[x, y]=x y-y x .
$$

A \mathbb{C}-linear mapping $D: A \rightarrow A$ is a called a Lie derivation of A if $D: A \rightarrow A$ satisfies

$$
D[x, y]=[D(x), y]+[x, D(y)]
$$

for all $x, y \in A$. Following a \mathbb{C}-linear mapping $D: A \rightarrow A$ is a called a (α, β, γ)-derivation of A if there exist $\alpha, \beta, \gamma \in \mathbb{C}$ such that

$$
\alpha D[x, y]=\beta[D(x), y]+\gamma[x, D(y)]
$$

for all $x, y \in A$. For more details see [1] and [12].
In this talk, we consider the stability of the following $(\alpha, \beta, \gamma)-$ derivation equation

$$
\alpha D[x, y]=\beta[D(x), y]+\gamma[x, D(y)]
$$

associated to the (m, n) - Cauchy Jensen type functional equation

$$
\sum f\left(\frac{\Sigma x_{i_{j}}}{m}+\Sigma x_{k_{j}}\right)=\frac{n-m+1}{n}\left[\sum g\left(x_{i}\right)\right]
$$

for all $x_{i_{j}} \in A$ in Lie algebras.

References

[1] J. P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, Harvard University, 1964.
[2] M. Crainica, F. Schätza, and I. Struchiner, A survey on stability and rigidity results for Lie algebras, Indagationes Mathematicae, 25 (5), (2014), 957-976.

[^38]
Weakly coherent proprety in amalgamated algebra along an ideal

Haitham EL ALAOUI

Sidi Mohamed Ben Abdellah University
Faculty of Sciences Dhar Al Mahraz
Laboratory of Geometric and Arithmetic Algebra
Fez, Morocco
elalaoui.haithame@gmail.com
(With N. Mahdou and H. MOUANIS)

Abstract

Let $f: A \longrightarrow B$ be a ring homomorphism and let J be an ideal of B. In this paper, we inverstigate the weakly coherent propety that the amalgamation $A \bowtie^{f} J$ might inherit from the ring A for some classes of ideals J and homomorphisms f. Our results generates original examples which enrich the current literature with new families of examples of non-coherent weakly coherent rings.

References

[1] M. F. Atiyah, ; I. G. Macdonald; Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.
[2] N.Bourbaki; Commutative algebra, Chapitre 1-7, Springer, Berlin, 1998.
[3] S. Glas, Commutative Coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
[4] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
[5] M. D'Anna, C. A. Finocchiaro, and M. Fontana; Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (2010), 1633-1641

[^39]
An application of Linear algebra to image compression

Khalid EL ASNAOUI

Moulay Ismail University
Faculty of Sciences and Technology
Errachidia, Morocco
(With H. Aksasse, M. Ouhda, B. Aksasse and M. Ouanan)

Abstract

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

[^40]
On the structure of some finitely generated $R[G]$-modules

Abderrahim EL ASSIOUI
Faculty of Sciences
Fez, Morocco
abderrahim-ass@hotmail.com
(With M. E. Charkani)

Abstract

Let G be a finite solvable group and $(R, \pi R, k)$ a SPI-ring where k its residual field. In this work, we expose some new results about the structure of some finitely generated $R[G]$-modules. More precisely, we show that if the characteristic p of k does not divide the of order n of G, then for any finitely generated $R[G]$-module M of finite length -such that $\widetilde{G} M=0$ - there exist a unique R-module N such that M is isomorph - as R-module- to an external direct sum of $f_{p}(n)$ copies of N where $f_{p}(n)$ is the greatest common divisor of all orders of p modulo q where q runs in the set of all prime divisors of n. In other hand we show that if the residual field k of R is a finite field and M is a finitely generated $R[G]$-module M of finite length such that $\widetilde{G} M=0$, then the p-adic valuation of the order of M is a multiple of the greatest common divisor $d_{p}(n)$ of all orders of p modulo d where d runs in the set of all divisors $d \geq 2$ of n. In other words the order of M is a power q^{m} of q where q is the order of the residual field k and m is an integer such that $m \geq 2$. As an application we give an upper bound of the p-part (the p-Sylow subgroup) $C l_{p}(L / K)$ of the relative class group $C l(L / K)$ of a relative Galois extension of numbers fields L / K.

[^41]
Retractability and co-retractabilitty and properties of endomorphism ring

Mohammed EL BADRY
Departement of Mathematics and Computer Faculty of Sciences El Jadida, Morocco
elbadrymohammed2@gmail.com
(With M. A. Abdallaoui and A. Haily)

Abstract

Let R be a ring with unity, M a left R-module. M is said to be retractable(resp co-retractable) if for every nonzero R-submodule N, there exists a nonzero endomorphism u of M such that $u(M)$ is contained in N (resp for every nonzero proper R-submodule N, there exists a nonzero endomorphism u of M such that $u(N)=0$). A ring R is said to be retractable (resp co-retractable) if every left R-module is retractable (resp every left R-module is co-retractable). We characterize the co-retractable and retractable ring, the retractability of simple extension ring is also studied.

References

[1] A.N. Abyzov, ON SOME CLASSES OF SEMIARTINIAN RINGS, Siberian Mathematical Journal, Vol. 53, No. 5, pp. 763-771, 2012
[2] M. Alaoui and A. Haily, perfect rings for which the converse of Schur's lemma holds, Publ. Mat. 45(1) (2001), 219-222.
[3] Amini B., Ershad M., and Sharif H., Coretractable modules, J. Austral. Math. Soc. Ser. A, 86, No. 3, 289-304 (2009).
[4] A. Haily, and A. Kaidi, Caractérisation de certaines classes d'anneaux par des propriétés des endomorphismes de leurs modules, Communications in Algebra, 27(10), 4943-4951 (1999)

[^42]
Indices of Rubin-Stark units

Saad EL BOUKHARI

Faculty of Sciences
Meknes, Morocco
saadelboukhari1234@gmail.com

Abstract

Let K / k be a finite abelian extension of totally real number fields with Galois group $G:=\operatorname{Gal}(K / k)$.

We constuct a $\mathbb{Z}[G]$-module generated by the Rubin-Stark elements associated with the extension K / k, and we show that this module is contained in the part of the exterior product of the module of S-units generated by a certain idempotent.

We study, then, the finitude of the obtained quotient and we evaluate it in termes of Sinnott's index and the class number. We analyse, ultimately, the behavior of this index in the cyclotomic \mathbb{Z}_{p}-tower.

References

[1] Oukhaba. H. Indice des unités elliptiques dans les \mathbb{Z}_{p}-extensions. Bull. Soc. Math. France. 135 (2), (2007), 299-322.
[2] Popescu. C. D. Gras-type conjectures for function fields. Compositio. Math. 118, (1999), 263290.
[3] Rubin. C. A Stark Conjecture "Over $\mathbb{Z} "$ for abelian L-functions with multiple zeros. Ann. Ins. Fourier. 46, (1996), 33-62.
[4] Sinnott. W. On the stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (2), (1980), 181-234.

[^43]
Iwasawa theory and modular forms

Abdelaziz EL HABIBI
Mohammed First University Oujda, Morocco bouazaoui.zakariae10@gmail.com
(With Z. Bouazzaoui)

Abstract

Iwasawa theory and modular forms are the most popular fields of number theory. We present a short talk on both subjects and relations with Main conjecture.

References

[1] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, The GL2 main conjecture for elliptic curves without complex multiplication. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 101(1)(2005), 163-208.
[2] R. Sujatha, Iwasawa theory and modular forms. Pure and Applied Mathematics Quarterly 2.2 (2006).
[3] R. Pollack, and K. Rubin, The main conjecture for CM elliptic curves at supersingular primes. Annals of mathematics, (2004), 447-464.

[^44]
Euclidean Lattice and cryptography

Mohamed El HASSANI

Sidi Mohamed Ben Abdellah University
FP, LSI, Taza, Morocco
abouaminem@gmail.com
(With A. Chillali and A. Mouhib)

Abstract

Cryptography allows the secret exchange of information on the Internet. The RSA method, although widely used, shows weaknesses and failures that remain to be solved. Cryptography on Lattice, a newly emerged concept of using operations that act on vectors and polynomials. This method based on the principle of "mixing", "combination" between message and public key P and disentangling with private key S, although promising, is still imperfect because the subspace generated by P is a subset generated by S . Based on the polynomial language "modulo $x^{4}-1$ " and vectorial (geometric space); It uses the rotation operations of polynomials with coefficients that correspond to columns of the Cryptris. In this language, multiplication by X shifts the coefficients one notch to the left while the division shifts them to the right; While retaining the possibility of exchanging the division and multiplication operation.

References

[1] Ch. Peikert, A Decade of Lattice Cryptography, February 17, 2016
[2] T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE, Transactions on Information Theory, Vol.31(1985), pp.473- 481.
[3] N. Demytko, A New Elliptic Curve Based Analogue of RSA, in T. Helleseth, editor, Advances in Cryptology-Eurocrypt?93, Springer-Verlag, New York, (1994), pp. 4049.

[^45]
On power serieswise Armendariz rings
 Mounir EL OUARRACHI
 Department of Mathematics
 Faculty of Sciences and Technology of Fez, Box 2202
 University S. M. Ben Abdellah
 Fez, Morocco
 m.elouarrachi@gmail.com
 (With N. Mahdou)

 Dedicated to Our Professor El Amin KAIDI

 Dedicated to Our Professor El Amin KAIDI}

Abstract

In this paper, we investigate the transfer of the property of power serieswise Armendariz to trivial ring extensions, direct product of rings and the homomorphic image. The article includes a brief discussion of the scope and precision of our results.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra. (26) (1998), 2265-2272.
[2] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3128-3140.
[3] R. Antoine, Examples of Armendariz rings, Comm. Algebra 38 (11) (2010), 4130-4143.
[4] E. Armendariz, A note on extensions of Baer and P. P. rings, J. Austral. Math. Soc.(18) (1974), 470-473.
[5] C. Bakkari, and N. Mahdou, On Armendariz Rings, Contributions to Algebra and Geometry. (50) (2009), 363-368.
[6] S. Hizem, A note on nil power serieswise Armendariz rings, Rendiconti del Circolo Matematico di Palermo 59 (2010), 87-99.
[7] C. Y. Hong, N. K. Kim, T. K. Kwak, Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), 231-242.
[8] C. Huh, H. K. Kim and Y. Lee, Questions On 2-primal rings, Comm. Algebra, 26 (1998), 595-600.
[9] C. Huh, CO. Kim, E. J. Kim, HK. Kim and Y. Lee, Nilradicals of power series rings and nil power series rings, J. Korean Math. Soc., 42 (2005), 1003-1015.

[^46]
When every pure ideal is projective

Rachida EL KHALFAOUI
Department of Mathematics
Faculty of Sciences and Technology of Fez, Box 2202, University S. M. Ben Abdellah

Fez, Morocco
elkhalfaoui-rachida@outlook.fr
(With N. Mahdou)
Dedicated to Our Professor El Amin KAIDI

Abstract. In this Talk, we study the class of rings in which every pure ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as pullbacks, trivial ring extensions and amalgamation of rings.

Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.

References

[1] M.M. Ali and D. J. Smith, Pure Submodules of Multiplication Modules, Beiträge Algebra Geom. 45 (2004), 61-74.
[2] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1) (2009), 3-56
[3] F. Cheniour and N. Mahdou, When every flat ideal is projective, Comment. Math. Univ. Carolina 55(1) (2014), 1-7.
[4] M. D'Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (2010), 1633-1641.
[5] J.S. Hu, H. Liu and Y. Geng; When every pure ideal is projective, J. Algebra Appl. Vol. 15, No. 2 (2016) 1650030.

[^47]
Increasing the capacity of O-MIMO systems using MGDM technique

Nourddine ELHAJRAT

Laboratory of Optoélectronique et Techniques Energétiques Appliquées Departementt of Physics, FST Errachidia, My Ismail University, Morocco elhajratssi@gmail.com

(With O. EL Outassi and Y. Zouine)

Abstract

The large bandwidth of multimode fiber (MMF), more particular graded index multimode fiber (GI-MMF) makes it a very attractive medium for multiservice transmission in local area networks. MGDM (Group Mode Diversity Multiplexing) is a multiplexing technique, which aims to improve the multimode optical fiber's performance by spatially multiplexing the data streams to be transmitted. We study in this work the optical MIMO systems (Multi-input Multi-output) over optical fiber on an MMF, specifically adapting the architecture of MIMO transmission systems. In this context we studied the technique of multiplexing Diversity modes group (MDGM) to assess transmission capacity. Indeed, the latter depends on the injection conditions and the state of the optical fiber.

References

[1] L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella et W. Gong, Demonstration of a small-form-factor WWDM transceiver module for $10-\mathrm{Gb} / \mathrm{s}$ local area networks, IEEE Photonics Technology Letters, vol. 14, n ${ }^{\circ} 15$, pp. 702-704, 2002.
[2] G.D. Golden et al Detection algorithm and initial laboratory results using V-BLAST space-time communication architectur Electronics Letters, Vol. 35, No. 1, pp. 14-16, 1999.
[3] T. Koonen, H. Van den Boom, F. Willems, J. Bergmans, and G.-D. Khoe, Broadband multiservice in house networks using mode group diversity multiplexingin Proc. Int. Plastic Opt. Fibers Conf., Tokyo, Japan, 2002, pp. $87 ? 90$
[4] [4] M. Awad, I. Dayoub, W. Hamouda, and J. M. Rouvaen, Adaptation of the mode group diversity multiplexing technique for radio signal transmission over MMF IEEE/OSA J. Opt. Commun. Netw, vol. 3, no. 1, pp. 1?9, Dec. 2011.
[5] E. Telatar, Capacity of multi-antenna Gaussian channels Eur. Trans. Telecommun, vol. 10, no. 6, pp.585?595, Nov/Dec. 1999.

[^48]Fuzzy subgroup of an additive Fuzzy group
M'hamed ELOMARI
Sultan Moulay Slimane University
Beni Mellal, Morocco
(With S. Melliani)

Abstract

In this abstract we investigated the fuzzy subgroups of a fuzzy group $\left(F\left(\mathbb{R}^{n}\right), \widetilde{+}\right)$, where $\widetilde{+}$ is the extension of + defined on \mathbb{R}^{n}, and we studied the relationship between the "crips" subgroup of $\left(\mathbb{R}^{n},+\right)$ and the above fuzzy subgroups.

References

[1] P. Kaplan, Sur le 2-groupe de classes d'idéaux des corps quadratiques. J. Reine angew. Math. 283/284 (1976), 313-363.
[2] J.M. Anthony, H. Sherwood, Fuzzy groups redefined. Journal of Mathematical Analysis and Application 69 (1977) 124-130.
[3] B. Davvaz, J.M. Zhan, K.P. Shum, Generalized fuzzy Hv-submodules endowed with intervalvalued membership functions. Information Sciences 178 (2008) 3147-3159.
[4] D. DUBOIS and H. PRADE, Operations on fuzzy numbers. INT. J. SYSTEMS SCI., 1978, VOL. 9, No.6, 613-626.
[5] W.J. Liu, Fuzzy invariant subgroups and fuzzy ideas.Fuzzy Sets and Systems 8 (1982) 131-139.
[6] J.N. Mordeson, K.R. Bhutani, A. Rosenfeld, Fuzzy Group Theory. World Scientific, Singapore, 2005.
[7] J.N. Mordeson, D.S. Malik, Fuzzy Commutative Algebra.World Scientific, Singapore, 1998.

[^49]
The cosine-sine functional equation on a semigroup with an involutive automorphism

Elhoucien ELQORACHI
Ibn Zohr University, Faculty of Sciences
Agadir
elqorachi@hotmail.com
(With O. Ajebbar)

Abstract. By using algebraic methods, we determine the complex-valued solutions of the following extension of the Cosine-Sine functional equation

$$
f(x \sigma(y))=f(x) g(y)+g(x) f(y)+h(x) h(y), x, y \in S
$$

where S is a semigroup generated by its squares and σ is an involutive automorphism of S. We express the solutions in terms of multiplicative and additive functions.

[^50]
On nice modules and its dualization

Indah EMILIA WIJAYANTI
Department of Mathematics
Universitas Gadjah Mada, Yogyakarta
Indonesia
ind_wijayanti@ugm.ac.id

Abstract

A ring with identity is called a clean ring if every element of the ring decomposes as a sum of an idempotent and a unit of the ring. Moreover, Khaksari and Moghimi [4] have defined a clean module, i.e. an R-module M is called a clean module if the $\operatorname{ring} S=\operatorname{End}_{R}(M)$ of all endomorphims of M is a clean ring. The important fact is any continuous module is a clean module (see Camillo et al. [1] and [2]). However, a submodule of a clean module does not have to be a clean module. For example the set of integer \mathbb{Z} is a not a clean module, meanwhile it is contained in a clean module \mathbb{Q} as \mathbb{Z}-modules. In their paper, Ismarwati el al. [3] proposed a module whose submodules are clean and called it a nice module. An interesting question is which modules are nice modules. We present some sufficient conditions under which a module is a nice module. Furthermore, a dualization of nice modules come from the observation of cleanness of factor modules of a module. A module M is called a co-nice module if all its factor module M / K is a clean module for any submodule K of M. We give some examples and sufficient conditions under which a module is a co-nice module.

References

[1] V.P. Camillo, D. Khurana, T.Y. Lam, W.K. Nicholson, Continuous Modules are Clean, Journal of Algebra 304 No. 1 (2006), 94-111.
[2] V.P. Camillo, D. Khurana, T.Y. Lam, W.K. Nicholson, Y. Zhou, A Short Proof that Continuous Modules are Clean, Contemporary Ring Theory 2011, Proceedings of the Sixth China-JapanKorea International Conference on Ring Theory (2012), 165-169.
[3] A. Ismarwati, H. France-Jackson, S. Wahyuni, I.E. Wijayanti, 2016, On Nice Modules, JP Journal of Algebra, Number Theory and Applications Vol. 38 Number 3 (2016), 213-225.
[4] A. Khaksari, G. Moghimi, Some Results on Clean Rings and Modules, World Applied Sciences Journal 6 (10) (2009), 1384-1387.

[^51]
Emulate the neural network of nano arduino

Fouad ESSAHLAOUI

Departement of Physics, FST, Errachidia, My Ismail University, Morocco
essahlaouifouad@gmail.com
(With R. Skouri and A. EL Abbassi)

Abstract

This work presents an artificial neural network implementation in Arduino Board, simulated Network with Proteus ISIS. The network described here is a feed-forward Backpropagation Network. It is considered as a best general purpose network for either supervised or unsupervised learning. The code for the project is provided as Mplab. It is a plug and run for generating ".hex" file and uploding it to arduino in simulator. run the programme and there is a section of configuration information that can be used to quickly build and train a customized network. The write-up provided here gives an overview of artificial neural networks, details of the sketch, it's an introduction to some of the basic concepts employed in feed forward networks and the backpropagation algorithm.

[^52]
On some conjectures on some sorts of Jordan derivations

Brahim FAHID

Department of Mathematics
Faculty of Sciences, Mohammed V University
Rabat, Morocco
fahid.brahim@yahoo.fr
(With D. Bennis)

Abstract. In this talk, we present a recent investigation on some conjectures related to some sorts of Jordan derivations.

References

[1] S. Ali and A. Fošner, On Generalized (m, n)-Derivations and Generalized (m, n)-Jordan Derivations in Rings, Algebra Colloq. 21 (2014), 411-420.
[2] A. Fošner, A note on generalized (m, n)-Jordan centralizers, Demonstratio Math. 46 (2013), 254-262.
[3] J. Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstratio Math. 41 (2008), 773-778.
[4] J. Vukman, On (m, n)-Jordan centralizers in rings and algebras, Glas. Mat. 45 (2010), 43-53.

[^53]
On the determination of periods of linear recurrences

Oumar FALL

Département de Mathématique,
Université Cheikh Anta Diop de Dakar, Sénégal oumar3.fall@ucad.edu.sn
(With O. Diankha, M. Mignotte and M. Sanghar)

Abstract. The periodicity of LRS modulo p, with p a prime integer, was enough studied and it was particularly approached by L. Cerlienco, M. Mignotte and F. Piras.
O. Diankha provided results, in favour of sequences of the third degree, based on characteristic polynomial. We'll give a arithmetical interpretation of these results, which appear very simple to study the periodicity of LRS of the third degree.

We prove that the value of the period T_{p} of a linear recurring sequence modulo p is intimately linked to the decomposition of its companion polynomial modulo p and to deduce fast algorithms providing a multiple of T_{p}.

We study in detail the cost of the calculation of T_{p} for binary and cubic recurrences.

For the cubic recurrences, we give also the matrix method and will prove that the beginning of Berlekamp's algorithm can also lead to the same result.

We show that trere are applications in shift register sequences.

[^54]
The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

Absolutely $l q$-finite extensions

El Hassane FLIOUET

Regional Centre of Trades Education and Training, Inezgane, Morocco
fliouet@yahoo.fr

Abstract

Let K / k be purely inseparable extension of characteristic $p>0$. By invariants, we characterize the measure of the size of K / k. In particular, we give a necessary and sufficient condition that K / k is of bounded size. Furthermore, in this note, we continue to be interested in the relationship that connects the restricted distribution of finitude at the local level of intermediate fields of a purely inseparable extension K / k to the absolute or global finitude of K / k. Part of this problem was treated successively by J.K Devney, and in my work with M. Chellali. The other part is the subject of this paper, it is a question of describing the absolutely $l q$-finite extensions. Among others, any absolutely $l q$ finite extension decomposes into w_{0}-generated extensions. However, we construct an example of extension of infinite size such that for any intermediate field L of $K / k, L$ is of finite size over k. In addition, K / k does not respect the distribution of horizontal finitude.

References

[1] M. Chellali et E. Fliouet, Extensions purement inséparables d'exposant non borné, Archivum Mathematicum Ann.Sci.Math Québec Vol 28 no. 1-2, (2004), 65-75
[2] M. Chellali et E. Fliouet, Théorème de la clôture lq-modulaire et applications, Colloq. Math. 122, (2011), 275-287
[3] J.K. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc. 198, (1974), 287-295.
[4] J.K. Deveny, wo-generated field extensions, Arch. Math. 47, (1986), 410-412.
[5] L.A. Kime, Purely inseparable modular extensions of unbounded exponent, Trans. Amer. Math. Soc 176, (1973), 335-349.
[6] J.N. Mordeson and B.Vinograde, Structure of arbitrary purely inseparable extension fields, Springer-Verlag, Berlin, LNM 173, (1970).
[7] G. Pickert, Inseparable Körperweiterungen, Math. Z. 52, (1949), 81-135.
[8] M.E. Sweedler, Structure of inseparable extensions, Ann. Math. 87 (2), (1968), 401-410.
[9] W.C. Waterhouse, The structure of inseparable field extensions, Trans. Am. Math. Soc. 211, (1975), 39-56.

[^55]
Classification of pairs of linear mappings between two vector spaces and between their quotient space and subspace

Carlos M. DA FONSECA
Department of Mathematics
Kuwait University
Kuwait
mhamu786@gmail.com

Abstract. The canonical form of matrices of pairs of linear mappings

$$
\mathcal{A}: U \rightarrow V, \quad \mathcal{B}: U \rightarrow V
$$

among finite dimensional vector spaces U and V over a field \mathbb{F} was given by Kronecker in 1890. The theory of such pairs, which is known as the theory of matrix pencils, is one of the most fruitful branches of linear algebra, with applications in many other areas. In this talk, we provide a canonical form of matrices of pairs of linear mappings

$$
\mathcal{A}^{\prime}: U / U^{\prime} \rightarrow V^{\prime}, \quad \mathcal{B}: U \rightarrow V
$$

in which U, V are finite dimensional vector spaces over a field $\mathbb{F}, U^{\prime} \subset U$ and $V^{\prime} \subset V$ are their subspaces, and U / U^{\prime} is a quotient space. Related results were obtained earlier by Futorny and Sergeichuk.

This is a joint work with A. Dmytryshyn and T. Rybalkina.

[^56]
A construction and representation of some variable length codes

Nasser GHEDBANE

Laboratory of Pure and Applied Mathematics
Department of Mathematics
University of M'sila
Algeria
nacer.ghadbane@yahoo.com

Abstract

Let Σ be an alphabet. A subset X of the free monoid Σ^{*} is a code over Σ if for all $m, n \geq 1$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in X$, the condition : $x_{1} x_{2} \ldots x_{n}=y_{1} y_{2} \ldots y_{m}$ implies $n=m$ and $x_{i}=y_{i}$ for $i=1, \ldots, n$. In other words, a set X is a code if any word in X^{+}can be written uniquely as a product of words in X [1]. It is not always easy to verify a given set of words is a code.

In this paper, we give the construction and representation by deterministic finite automata of some variable length codes.

References

[1] J. Berstel \& D. Perrin. "Theory of codes", Academic Press (1984).
[2] N. Bedon. "Langages reconnaissables de mots indexés par des ordinaux", thèse de Doctorat, université de Marne-La-Valée, 1998.
[3] M. Billaud. "Théorie des langages", université de Bordeaux, 2014.
[4] O. Carton. "Langage formels, calculabilité et complexité", 2006.
[5] R. Cori et D. Perrin. "Automates et Commutations Partielles," RAIRO-Informatique théorique, tome19, n° 1, p.21-32, (1985).
[6] R. Floyd, R. Beigel. "Traduction de D. Krob. Le langage des machines", International Thomthenn France, Paris, (1995).
[7] N. Ghadbane and D. Mihoubi. "A Construction of Some Group Codes, International Journal of Electronics and Information Engineering, Vol. 4, (2016).
[8] N. Ghadbane and D. Mihoubi. "Some attacks of an encryption system based on the word problem in a monoid", International Journal of Applied Mathematical Research, vol 5(4), (2016).
[9] N. Ghadbane and D. Mihoubi. "Presentation of monoids by generators and relations", Global and Stochastic Analysis (GSA), vol 3(2), (2016).
[10] D. Goswami and K. V. Krishna, "Formal Languages and Automata Theory", 2010.
[11] H. J. Shyr. "Free monoids and languages", Department of Mathematicsn, Soochow University Taipei,Taiwan R.O.C,1979.
[12] I. Klimann. "Autour de divers problèmes de décision sur les automates", Mémoire d'habilitation à diriger des recherches, université Paris Diderot, Sorbonne, 2014.
[13] A. Maheshwari and M. Smid. "Introduction to theory of Computation", School of Computer Science Carleton, University Ottawa, Canada, 2014.
[14] N. Maurice. "Eléments de la théorie général des codes", Université de Paris, (1965-1966).

[^57]
Skew cyclic codes over a principal ideal ring

Mohammad GHULAM

Department of Mathematics, Aligarh Muslim University,

Aligarh-202002, India mohdghulam202@gmail.com
(With M. Ashraf)

Abstract. Let θ_{t} be an automorphism on ring R. Then a linear code C of length n over R is called a skew cyclic code or θ_{t}-cyclic code if for each $c=$ $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$ implies that

$$
\sigma(c)\left(\theta_{t}\left(c_{n-1}\right), \theta_{t}\left(c_{0}\right), \cdots, \theta_{t}\left(c_{n-2}\right)\right) \in C .
$$

In this paper, we study skew cyclic codes over the ring $F_{q}+u F_{q}+v F_{q}$, where $u^{2}=u, v^{2}=v, u v=v u=0, q=p^{m}$ and p is a prime. We define a Gray map from $F_{q}+u F_{q}+v F_{q}$ to F_{q}^{3} and investigate the structural properties of skew cyclic codes over $F_{q}+u F_{q}+v F_{q}$ using decomposition method. It is shown that the Gray images of skew cyclic codes of length n over $F_{q}+u F_{q}+v F_{q}$ are the skew 3-quasi cyclic codes of length $3 n$ over F_{q}. Finally, the idempotent generators of skew cyclic codes over $F_{q}+u F_{q}+v F_{q}$ have also been discussed.

[^58]
$L_{d}(1)$ is $\bigcirc($ logloglogd $)$ for almost all square free d

G Sudhaamsh Mohan REDDY

Faculty of Sciences and Technology
Icfai Foundation for Higher Education Dontanapalli, Shankarpalli Road, Hyderabad-501203

India
dr.sudhamshreddy@gmail.com

Abstract

Let d be a square free integer.Using Hardy-Ramanujan's value of normal order of $\omega(d)$ we show that $L_{d}(1)=\bigcirc(\log \log \log d)$ except on a negligible set. We note that the proof verifies Robin's inequality $\sigma(n)<e^{\gamma} n \log \operatorname{logn}$ (equivalent form of Riemann Hypothesis) for such numbers.

References

[1] Tom Apostol, Introduction to Analytic Number Theory, Springer 1976
[2] G H Hardy, Ramanujan Twelve lectures; Chelsea 1959
[3] M. Hindry, Introduction to Zeta and L-functions from Arithmetic Geometry and some applications, (Mini curso, XXI Escola de Algebra, Brasilia, julho 2010)
[4] J. Lagarias, An Elementary problem equivalent to the Riemann Hypothesis, Amer Math Monthly 109 (2002) pp 534-543
[5] S. Srinivas Rau and B.Uma, Squarefree ideals in Quadratic fields and the Dedekind Zeta function, Vikram Math Journal Vol 13 (1993) pp 35-44
[6] G.Tenenbaum, Introduction to Analytic and Probabilitic Number Theory, Cmbridge University Press 1995.
[7] TIFR Pamphlet 4, Algebraic Number Theory, 1966

[^59]
The relationship between almost Dunford-Pettis operators and almost limited operators

Jawad H'MICHANE
Moulay Ismail University, Faculty of Sciences
Departement de Mathematics, hm1982jad@gmail.com
(With K. El Fahri)

Abstract. We investigate Banach lattices on which each positive almost DunfordPettis operator is almost limited and conversely.

References

[1] C.D. Aliprantis and O. Burkinshaw, Positive operators, Reprint of the 1985 orig- inal, Springer, Dordrecht, 2006.
[2] B. Aqzzouz and A. Elbour, Semi compactness of almost Dunford-Pettis operators on Banach lattices, Demonstratio Mathematica XLIV(1) (2011), 131141.
[3] B. Aqzzouz, A. Elbour and J. Hmichane, On some properties of the class of semi-compact operators, Bulletin of the Belgian Mathematical Society 18(4) (2011), 761767.
[4] J.X. Chen, Z.L. Chen and G.X. Ji, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412 (2014), 547553.
[5] Z.L. Chen and A.W. Wickstead, L-weakly and M-weakly compact operators, Indag. Math. 10(3) (1999), 321336.
[6] P.G. Dodds, 0-weakly compact mappings of Riesz spaces, Trans. Amer. Math. Soc. 214 (1975), 389402.
[7] P.G. Dodds and D.H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34 (1979), 287320.
[8] A. Elbour, N. Machrafi and M. Moussa, Weak compactness of almost limited operators, http://arxiv.org/abs/1403.0136.
[9] N. Machrafi, A. Elbour and M. Moussa, Some characterizations of almost limited sets and applications, http://arxiv.org/abs/1312.2770.
[10] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. 11. W. Wnuk, On the dual positive Schur property in Banach lattices, Positivity 17 (2013), 759773.

[^60]
Family of functional inequalities for the uniform measure

Ali HAFIDI
Faculty of Sciences and Technology
Errachidia, Morocco
hafidiali28@gmail.com

Abstract. We consider the semigroup $\left(P_{t}\right)_{t \geq 0}$ generated by the operator $L:=$ $\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}$, on the interval $[-1,1]$ equipped with the probability measure $\mu(d x):=\frac{d x}{2}$. We establish, via a method involving probabilistic techniques, a family of inequalities which interpolate between the Sobolev and Poincaré inequalities.

[^61]
On the class group of formal power series rings

Ahmed HAMED

Gafsa Preparatory Engineering Institute
Monastir, Tunisia
hamed.ahmed@hotmail.fr
(With S. Hizem)

Abstract

Let $\mathrm{Cl}_{t}(A)$ denote the t-class group of an integral domain A. P . Samuel has established that if A is a Krull domain then the mapping $\mathrm{Cl}_{t}(A)$ $\rightarrow \mathrm{Cl}_{t}(A \llbracket X \rrbracket)$, is injective and if A is a regular UFD then $\mathrm{Cl}_{t}(A) \rightarrow \mathrm{Cl}_{t}(A \llbracket X \rrbracket)$, is bijective. Later, L. Claborn extended this result in case A is a regular Noetherian domain. In this work we prove that the mapping $\mathrm{Cl}_{t}(A) \rightarrow \mathrm{Cl}_{t}(A \llbracket X \rrbracket)$; $[I] \mapsto\left[(I . A \llbracket X \rrbracket)_{t}\right]$ is an injective homomorphism and in case of an integral domain A such that each v-invertible v-ideal of A has v-finite type, we give an equivalent condition for $\mathrm{Cl}_{t}(A) \rightarrow \mathrm{Cl}_{t}(A \llbracket X \rrbracket)$, to be bijective, thus generalizing the result of Claborn.

References

[1] L. Claborn. Note generalizing a result of Samuel's. Pacific J. Math. 15 (1965) $805-808$.
[2] P. Samuel. On unique factorization domains. Illinois 5 (1961) $1-17$

[^62]
Zero-divisor graphs of power series rings

Amor HAOUAOUI

University of Monastir
Monastir, Tunisia
amorhaouaoui@yahoo.fr

Abstract

Let R be a commutative ring with identity, $Z(R)$ its set of zerodivisors and $N(R)$ its nilradical. The zero-divisor graph of R denoted by $\Gamma(R)$, is the graph with vertices $Z(R) \backslash(0)$, with distinct vertices x and y adjacent if and only if $x y=0$. In this paper we give some results about a zero-divisors in the power series ring $R[[X]]$, and we study the diameter of $\Gamma(R[[X]])$ in the case when $N(R)=Z(R)$. Also we give some results when $N(R) \subsetneq Z(R)$, among these case, we prove that $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=2$ and $\operatorname{diam}(\Gamma(R[[X]]))=3$ if R is one of the following rings, divided ring, $P V R$ ring, chained ring or R is a ring such that $Z(R)=a R+I$ with $a \in Z(R) \backslash N(R)$ and $I \subsetneq(0: a)$.

References

[1] D. F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[2] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999) 434-447.
[3] M. Axtell, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (6) (2005), 2043-2050.
[4] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999) 1465-1474.
[5] A. Badawi, On Φ-pseudo-valuation rings, Lecture Notes Pure Appl. Math. 205 (1999) 208226, Marcel Dekker, New York/Basel.
[6] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988) 208-226.
[7] D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (3) (1971) 427-433.
[8] A. Haouaoui, A. Benhissi, Zero-divisors and zero-divisor graphs of power series rings, Ricerche di Matematica. June 2016, Volume 65, Issue 1, pp 1-13
[9] T. Lucas, The diameter of a zero-divisor graph, Journal of Algebra 301 (2006) 174-193.

[^63]
Additive mappings on a prime rings with involution

My Abdallah IDRISSI
Department of Mathematics
Faculty of Sciences and Technology
University S. M. Ben Abdellah
Fez, Morocco
myabdallahidrissi@gmail.com
(With L. Oukhtite)

Abstract

This talk deals with the investigation of the relationship between the structure of a ring R and the behaviour of some additive mappings defined on R. More precisely, we will consider functions satisfying some specific differential identities.

References

[1] S. Ali, N. A. Dar and M. Asci, On derivations and commutativity of prime rings with involution, Georgian Math. J. (2015), Doi 10.1515/gmj-2015-0016.
[2] H. E. Bell and M. N. Daif On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), 337-343.
[3] A. Mamouni, L. Oukhtite and B. Nejjar, On *-semiderivations and *-generalized semiderivations, J. Algebra Appl. DOI: http://dx.doi.org/10.1142/S021949881750075X (in press).
[4] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Certain commutativity criteria for rings with involution involving generalized derivations, Comm. Alg. 45 (2017), no. 2, 698-708.
[5] L. Oukhtite, On Jordan ideals and derivations in rings with involution, Comment. Math. Univ. Carolin. 51 (2010), no. 3, 389-395.
[6] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2014), no. 2, 225-232.
[7] L. Oukhtite, Posner's Second Theorem for Jordan ideals in rings with involution, Expo. Math. 29 (2011), no. 4, 415-419.

[^64]
The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

Counting twin primes

Islem GHAFFOR

Department of Mathematics Faculty of Mathematics and Informatics University of Sciences and Technology

Oran, Algeria.
ghaffor.prime@outlook.com

Abstract

In this talk we give two new formulae which count exactly the quantity of twin primes not greater than a certain given value $36 n^{2}+60 n+21$ and $p_{n}^{2}-3$. We use in these formulae the arithmetic progressions and the cardinality. In the first formula, we do not need to make any "primality" test and in the second formula we use the n-th prime number and we show the relation between counting primes and twin primes. We would also say that we have produced new algorithms to make such count.

References

[1] Guy RK. Unsolved problems in number theory. New York: Springer-Verlag; 2004.
[2] Hardy GH, Wright EM. An introduction to the theory of numbers. Oxford; 1979.

[^65]
Trivial Extensions defined by 2-absorbing-like conditions

Mohammed ISSOUAL

Department of Mathematics
Faculty of Sciences and Technology of Fez, Box 2202, University S. M. Ben Abdellah

Fez, Morocco
issoual2@yahoo.fr
(With N. Mahdou)

Dedicated to Our Professor El Amin KAIDI

Abstract

Let R be a commutative ring with $1 \neq 0$. The notion of 2 -absorbing ideal and 2-absorbing primary ideal are introduced by Ayman BADAWI as a generalization of prime ideal and primary ideal respectively. A proper ideal I of R is called 2 -absorbing ideal (resp., 2 -absorbing primary ideal) if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$ (resp., $a b \in \sqrt{I}$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I})$.

In this paper, we investigate the transfer of 2-absorbing-like properties to trivial ring extensions.

References

[1] D.D. Anderson and Micheal Winderes, Idealisation of a module, J. Comm. Algebra 1 (1) (2009) 3-56.
[2] A. Badawi, On 2-Absorbing ideals of commutatifs rings, Bull. Austral .math. Soc. Vol. 75 (2007) 417-429.
[3] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings Bull. Korean Math. Soc. 51 (2014) No. 4, 1163-1173.
[4] A. Badawi, U. Tekir, and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (1) (2015), 97-111.
[5] A. Badawi, On weakly semiprime ideals of commutative rings, Beitr Algebra Geom. 51(4) (2014), 1163-1173.
[6] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston Journal of mathematics, Vol. 39, No. 2 (2013) 441-452.

[^66]
Bhargava rings over subsets

Lahoucine IZELGUE

Department of Mathematics Faculty of Sciences Semlalia Cadi Ayyad University
Marrakech, Morocco
izelgue@uca.ac.ma
(With I. Alrasasi)

Abstract

Let D be an integral domain with quotient field K and let E be any nonempty subset of K. The Bhargava ring over E at $x \in D$ is defined by $\mathbb{B}_{x}(E, D):=\{f \in K[X] \mid f(x X+e) \in D[X], \forall e \in E\}$. This ring is a subring of the ring of integer-valued polynomials over E. This paper studies $\mathbb{B}_{x}(E, D)$ for an arbitrary domain D. we provide information about its localizations and transfer properties, describe its prime ideal structure, and calculate its Krull and valuative dimensions.

References

[1] Alrasasi, I. , Izelgue, L., On the Prime Ideal Structure of Bhargava Rings, Comm. Algebra vol. 38 (2010), 1385-1400.
[2] Anderson, D. F., Bouvier, A., Dobbs, D. E., Fontana, M., Kabbaj, S., On Jaffard Domains, Expo. Math. 6 (1988), 145-175.
[3] Bhargava, M., Cahen, P.-J., Yeramian, J., Finite generation Properties for Various Rings of Integer-valued Polynomials. J. Algebra vol. 322 (4) (2009), 1129-1150.
[4] Cahen, P.-J., Chabert, P.-L., Integer-Valued Polynomials, AMS Surveys and Monographs 48, Providence, 1997.
[5] Fontana, M., Izelgue, L., Kabbaj, S., Les Sous-anneaux de la forme D+I d'un Anneau Intègre, Comm. Algebra 23 (1995), 4180-4210.
[6] Fontana, M., Izelgue, L., Kabbaj, S., Tartarone, F., On the Krull dimension of domains of integer-valued polynomials, Expo. Math. 15 (1997), 433-465.
[7] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[8] McAdam, S., Going down in polynomial rings, Can. J. Math. 23 (1971), 704-711.
[9] Yeramian, J., Anneaux de Bhargava, Ph.D. Thèse, Univerité de Aix-Marseille III, Marseille, France, 2004.
[10] Yeramian, J., Anneaux de Bhargava, Comm. Algebra 32 (8) (2004), 3043-3069.

[^67]
The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

Counting the number of Fuzzy topologies

Ali JABALLAH
University of Sharjah, United Arab Emirates
ajaballah@sharjah.ac.ae
(With M. Benoumhani)

Abstract

The number of topologies defined on a finite set is an outstanding and open problem. There is no known explicit formula for the total number of topologies $T(n)$, one can define on an n-element set. The sequence $T(n)$ is known just for $n \leq 18$, see [7].

Another approach of the subject is the enumeration according to the number of open sets. Let $T(n, k)$ be the number of topologies on an n-element set having $k \quad\left(2 \leq k \leq 2^{n}\right)$ open sets. The sequence $T(n, k)$ is known just for $k \leq 17$, see [7]. It is also known that $T(n, k)=0$, for $3 \cdot 2^{n-2}<k<2^{n}$ and $n \geq 3$.

On the other hand, fuzzy topological spaces satisfying some finiteness conditions have not been considered yet unlike the classical topology where this field is still active and attracting several researchers by its importance and by the numerous long-standing unsolved problems, [1], [2]. The main purpose of this work is to remedy this lack and initiate the corresponding fuzzy side of these problems.

For a set X of cardinality n, and a complete lattice M of cardinality m, let $T_{\mathcal{F}}(n, m)$ be the total number of fuzzy topologies on X, with membership values in M, and let $T_{\mathcal{F}}(n, m, k)$ be the number of fuzzy topologies on X, with membership values in M, having k open sets. We have trivially $T_{\mathcal{F}}(n, m, 2)=1, T_{\mathcal{F}}(n, m, 3)=$ $m^{n}-2$. For $k \geq 4$, calculations are not as immediate as for $k=2$, or 3 .

In this work we give conditions under which the number of fuzzy topologies on \mathcal{F} is finite. Then we compute $T_{\mathcal{F}}(n, m, 4)$ and $T_{\mathcal{F}}(n, m, 5)$. Then non-discrete topologies of maximal cardinalities are investigated, where the number and the cardinality of such topologies is established. Several known results for finite classical topologies are obtained as corollaries of the established results in this work for the fuzzy setting. We conclude with some open questions and directions for other investigations.

References

[1] M. Benoumhani. The Number of Topologies on a Finite Set. J. of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
[2] M. Benoumhani, M Kolli. Finite topologies and partitions. Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.5.
[3] C.L. Chang. Fuzzy topological spaces. J. Math. Anal. Appl., 24 (1968), pp. 182-189.
[4] M. Kolli, On the Cardinality of the T_{0}-Topologies on a Finite Set. International Journal of Combinatorics,Vol. (2014), Article ID 798074, 7 pages. http://dx.doi.org/10.1155/2014/798074.
[5] M. Kolli, Direct and elementary approach to enumerate topologies on a finite set, J. Integer Seq. 10 (2007), Article 07.3.1.
[6] H. Sharp, Jr., Cardinality of finite topologies, J. Combinatorial Theory 5(1968), 82-86.
[7] N. J. A. Sloane, Online Encyclopedia of Integer Sequences. Available online at http://www.reseach.att.com/ ~njas/sequences/index.html.
[8] R. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory $\mathbf{1 0}$ (1971) 75-79.
[9] D. Stephen, Topology on finite sets, Amer. Math. Monthly 75 (1968) 739-741.

[^68]
Additivity of Jordan higher derivable maps on alternative rings

Aisha JABEEN
Department of Mathematics
Aligarh Muslim University
Aligarh,202002, India
ajabeen329@gmail.com
(With M. Ashraf)

Abstract

Let \mathcal{R} be an alternative ring (not necessarily have identity element). A map (not necessarily additive) $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a Jordan (resp. Jordan triple) derivable map if $d(x y+y x)=d(x) y+x d(y)+d(y) x+y d(x)$ (resp. $d(x y x)=$ $d(x) y x+x d(y) x+x y d(x))$ holds for all $x, y \in \mathcal{R}$. In the present paper, it is shown that every Jordan (triple) derivable map is additive under certain assumptions.

[^69]
p-Local formations whose length ≤ 3
 Jehad AL JARADEN

Department of Mathematics
Al-Hussein Bin Talal University
Ma'an, Jordan
jjaraden@mtu.edu

Abstract. Throughout this paper, all groups are finite. Recall that a formation is a homomorphic \mathfrak{F} of groups such that each group G has a smallest normal subgroup (denoted by $G^{\mathfrak{F}}$) whose quotient is still in \mathfrak{F}. A formation \mathfrak{F} is said to be p-local if it contains each group G with $G /\left(\Phi(G) \cap O_{p}(G)\right) \in \mathfrak{F}$. Our main goal here is to prove the following theorem

Theorem: A non-reducible plocal formation \mathfrak{F} has length 3 if and only if $\mathfrak{F}=$ $\operatorname{Lform}_{p}(G)$ such that the one of the following conditions is satisfied:
(1) R is a non-abelian $p d$-group and G / R is p-group.
(2) G is cyclic group of order q^{2}, where $q \neq p$.
(3) G is non-abelian group of order q^{3}, where $q \neq p$.
(4) G is p^{\prime}-group, $R \subseteq \phi(G)$ and $G / R \cong A \times A \times A \cdots \times A$, where A is simple group.

References

[1] Gaschutz,W Zur therie der endlichen auflosbaren Grouppen, Math. Z (1963), 300-308.
[2] Jarden J.J Elements of heigh 3 of Lattice of p-saturated formations)J. Problem in algenra (1996), 45-59

[^70]
On the structure of 2-group $\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ of some imaginary quartic number field K

Idriss JERRARI

Mohammed First University, Faculty of Sciences,
Department of Mathematics, Oujda, Morocco
idriss_math@hotmail.fr
(With A. Azizi, A. Zekhnini, and M. Talbi)

Abstract. Let k be an algebraic number field. For a prime number p, let $k_{p}^{(0)}=k$ and $k_{p}^{(i)}$ denote the Hilbert p-class field of $k_{p}^{(i-1)}$ for $i \geq 1$. Then we have the sequence of fields

$$
k=k_{p}^{(0)} \subseteq k_{p}^{(1)} \subseteq \cdots \subseteq k_{p}^{(\infty)}=\bigcup_{i=0}^{\infty} k_{p}^{(i)}
$$

that is called the p-class field tower of k. Let K be an imaginary quartic cyclic number field of type (2, 2, 2), i.e. its 2-class group $\mathbf{C}_{K, 2} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, under some conditions. Then, in this work, we determine the structure of 2 -group $\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$.

References

[1] A. Azizi, Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}, Ann. Sci. Math. Québec, 23 (2), 15-21, (1999).
[2] A. Azizi, I. Jerrari, A. Zekhnini and M. Talbi, On the second 2 -class group $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ of some imaginary quartic cyclic number field K, preprint.
[3] A. Azizi, I. Jerrari, A. Zekhnini and M. Talbi, Units of some abelian imaginary number fields of type (2, 4), Gulf Journal of Mathematics, Vol 4, Issue 4 (2016) 166-170.
[4] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abeian 2-class field tower, J. Number Theory, 73 (1998), 182-194.
[5] L. Bouvier and J. J. Payan, Modules sur certains anneaux de Dedekind. Application à la structure du groupe des classes et à l'existence d'unités de Minkowski, J. Reine Angew. Math. 274/275 (1975), 278-286.
[6] E. Brown and C. J. Parry, The 2-class group of certain biquadratic number fields I, J. Reine Angew. Math. 295 (1977), 61-71.
[7] H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in mathematics 193, Springer-Verlag. New York (2000).
[8] G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l, Ann. Inst. Fourier, Grenoble 23, fasc. 3 (1973).
[9] M. N. Gras, Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de \mathbb{Q}, Publ. Math. Fac. Sciences de Besancon, Théorie des Nombres (1977-78).
[10] D. Hilbert, Über die Theorie des relativquadratischen Zahlkörper, Math. Ann. 51 (1899), 1-127.
[11] M. Ishida, The genus fields of algebraic number fields, Lecture notes in mathematics 555, Springer-Verlag (1976).

[^71]
Algebraic independence and algebraic independence measure of real numbers

Ali KACHA
AMGNCA Laboratory
Faculty of Sciences, Ibn Tofail University
Kenitra, Morocco
ali.kacha@yahoo.fr
(With B. Ounir)

Abstract

In this paper we provide some properties and results of results on transcendental and algebraic independence of real numbers. Then we give sufficient conditions on the real numbers $A_{1}, A_{2}, . ., A_{k}$, where $k \geq 3$ which ensure the algebraic independence of these numbers. The used method also permits us to calculate an algebraic independence measure of the above numbers.

[^72]
Property (UWп) under perturbations

Mohamed KACHAD

Département de Mathématiques
Faculty of Sciences and Technology
Université Moulay Ismail
Errachidia, Maroc
kachad.mohammed@gmail.com

Abstract

Property ($U W_{\pi}$) for a bounded linear operator $T \in L(X)$ on a Banach space X means that the points λ of the approximate point spectrum for which $\lambda I-T$ is upper semi-Weyl are exactly the spectral points λ such that $\lambda I-T$ is Drazin invertible. In this work we study the stability of this property under some commuting perturbation, as quasi-nilpotent perturbation and more in general, under Riesz commuting perturbations. We also study the transmission of property $\left(U W_{\Pi}\right)$ from T to $f(T)$, where f is an analytic function defined on a neighborhood of the spectrum of T.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers. Kluwer Academic, (2004).
[2] M. Berkani, M. Kachad, New Browder-Weyl type theorems, Bull. Korean. Math. Soc. 49 (2015),No. 2, pp. 1027-1040.
[3] M. Berkani and J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 (2003), 359-376.
bibitem DH S. V. Djordjević and Y. M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479-486.
[4] H. Heuser, Functional Analysis, John Wiley \& Sons Inc, New York, (1982).
[5] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
[6]
[7] M. Mbekhta and V. Müller, On the axiomatic theory of the pectrum, II, Studia Math. Appl. 119 (1996), 129-147.
[8] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
[9] Q.P. Zeng, Q.F. Jiang and H.J. Zhong, Spectra originating from semi-B-Fredholm theory and commuting perturbations, Studia Math. 219 no. 1 (2013), 1-18.

[^73]
Parametrizing MED semigroups with multiplicity up to five

Halil Ibrahim KARAKAS

Baskent University, Ankara
Turkey
karakas@baskent.edu.tr

Abstract

In a recent article to appear (Parametrizing Arf numerical semigroups, Journal of Algebra and its Applications, Vol. 16, No. 11(2017), DOI: 10.1142/S02194988177502097), P. A. GarciaSanchez, B. A. Hredia, J. C. Rosales and the author gave parametrization of Arf numerical semigroups with multiplicity up to seven and given conductor. In the present work, a new characterization of MED semigroups (numerical semigroups having maximal embedding dimension) is given and this characterization is used to parametrize MED semigroups with multiplicity up to five and given conductor.

[^74]
A note on finite products of fields

Karim DRISS

University Hassan II Casablanca
Department of Mathematics
Faculty of Sciences and Technology of Mohammedia
Mohammedia, Morocco
dkarim@ced.uca.ac.ma

Abstract

Let R be a commutative ring. Suppose that R is zero-dimensional, it would be interesting to check whether R contains a finite product of fields. Recently many papers have studied Artinian subrings of a commutative ring and direct limit of finite product of fields $([4,5,6,8])$. Recall that Artinian rings form an important class of zero-dimensional rings. Moreover, an Artinian ring has only finitely many idempotent elements. Essentially, the characterization of the set of Artinian subrings of a commutative ring is known (see [6]). In this talk we are interested in the Artinian overring of pair of rings, that means, we are looking for intermediate Artinian rings between R and T, where R is a subring of a von Neumann regular ring T.

References

[1] Arapovic, M. Characterizations of the 0-dimensional rings. Glasnik. Mat. Ser. 1983, Vol. 18 (38), 39-46.
[2] Arapovic, M. On the embedding of a commutative ring into a 0 -dimensional commutative ring. Glasnik. Mat. Ser. 1983, Vol. 18 (38), 53-59.
[3] Gilmer, R.; Heinzer, W.: Zero-dimensionallity in commutative rings. Proc. Amer. Math. Soc. 115, 881-893 1992
[4] R. Gilmer and W. Heinzer, Products of commutative rings and zero-dimensionality, Trans. Amer. Math. soc. 331 1992, 662-680.
[5] R. Gilmer and W. Heinzer, Artinian subrings of a commutative ring, Trans. Amer. Math. soc. 336 1993, 295-310.
[6] L. Izelgue and D. Karim, On the set of Artinian subrings of a commutative ring, Int. J. Comm. Rings 2, 2003, 55-62.
[7] P. Maroscia, Sur les anneaux de dimension zéro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 1974, 451-459.
[8] A. R. Magid, Direct limits of finite products of fields, Zero-dimensional commutative rings, (Knoxville, TN, 1994, 299-305, Lecture Notes in Pure and Appl. Math., 171 Dekker, NewYork.

[^75]
Left and right spectra of operator matrice
 Mohammed KARMOUNI
 Sidi Mohamed Ben Abdellah University
 Faculty of Sciences Dhar Al Mahraz
 Laboratory of Mathematical Analysis and Applications
 Fez, Morocco.
 (With A. Tajmouati and M. Abkari)

Abstract

In this paper, we investigate the limit points set of left and right spectra of upper triangular operator matrices $M_{C}=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$. We prove that $\operatorname{acc}\left(\sigma_{*}\left(M_{C}\right)\right) \cup W_{a c c \sigma_{*}}=\operatorname{acc}\left(\sigma_{*}(A)\right) \cup \operatorname{acc}\left(\sigma_{*}(B)\right)$ where $W_{a c c \sigma_{*}}$ is the union of certain holes in $\operatorname{acc}\left(\sigma_{*}\left(M_{C}\right)\right)$, which happen to be subsets of $\operatorname{acc}\left(\sigma_{l}(B)\right) \cap$ $\operatorname{acc}\left(\sigma_{r}(A)\right)$ and $\sigma_{*}()$ can be equal to the left or right spectrum. Furthermore, several sufficient conditions for $\operatorname{acc}\left(\sigma_{*}\left(M_{C}\right)\right)=\operatorname{acc}\left(\sigma_{*}(A)\right) \cup \operatorname{acc}\left(\sigma_{*}(B)\right)$ holds for every $C \in \mathcal{B}(Y, X)$ are given.

References

[1] P.Aiena. Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer.Acad.Press,2004.
[2] H. Elbjaoui and E. H. Zerouali. Local Spectral Theory for 2×2 Operator Matrices, IJMMS (2003):42, 2667-2672
[3] K.B.Laursen, M.M.Neumann. An Introduction To Local Spectral Theory in: London Mathematical Society Monograph, New series, Vol. 20, Clarendon Press, Oxford, 2000
[4] Koliha JJ. A Generalized Drazin Inverse. Glasgow Math. J. 1996, 38:367-81.
[5] H. Zariouh, H. Zguitti. On Pseudo B-Weyl Operators And Generalized Drazin Invertible For Operator Matrices, Linear and Multilinear Algebra, Volume 64, issue 7, (2016), 1245-1257.
[6] E H Zerouali, h Zguitti. Perturbation Of Spectra Of Operator Matrices And Local Spectral Theory, J Math Anal Appl, 2006, 324: 992-1005.
[7] S. Zhang, H. Zhong, L. Lin. Generalized Drazin Spectrum of Operator Matrices, Appl. Math. J. Chinese Univ. 29 (2) (2014), 162-170
[8] S F Zhang, H J Zhang, J D Wu. Spectra Of Upper Triangular Operator Matrices, Acta Math Sinica (in Chinese), 2011, 54: 41-60.

[^76]
The discrete logarithm problem modulo odd integers

Omar KHADIR
Faculty of Sciences and Technology
Mohammedia, Morocco
khadir@hotmail.com.

Abstract. Let m be a fixed odd positive integer. We define the recurrent sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ by the initial term $v_{0} \in \mathbb{N}$ with $0<v_{0}<p$, and the relations:

$$
v_{n+1}=\left\{\begin{array}{l}
\frac{v_{n}}{2} \text { if } v_{n} \text { is even } \\
\frac{m+v_{n}}{2} \text { otherwise }
\end{array}\right.
$$

In this communication, we try to generalize a previous work done with the parameter m as a prime number. It will be showen that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is useful when solving the modular equation $a^{x} \equiv b[m]$ in the multiplicative group $\left(\left(\frac{\mathbb{Z}}{m \mathbb{Z}}\right)^{*},.\right)$. We also analyze the case when m is the power of a prime number.

References

[1] O. Khadir and L. Szalay, A Special Integer Sequence Strongly Connected to the Discrete Logarithm Problem J. of theoretical physics and cryptography. Vol. 2 (2013), 1-5.
[2] N. Koblitz, A Course in number theory and cryptography, Graduate Texts in Mathematics, 2nd ed., Vol. 114, Springer-Verlag, 1994.
[3] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Hand book of applied cryptography, CRC Press, Boca Raton, Florida, 1997.

[^77]
Power series over strongly Hopfian bounded rings

Mohamed KHALIFA

Higher Institute of Transport and Logistics
University of Sousse 4002
Tunisia
khalifa.mohamed_cr@yahoo.fr

Abstract

An R-module M is called strongly Hopfian (respectively bounded) if for every endomorphism f of M the chain $\operatorname{Ker}(f) \subseteq \operatorname{Ker}\left(f^{2}\right) \subseteq \ldots$ stabilizes (respectively there exists a positive integer n such that for every endomorphism f of $M, \operatorname{Ker}\left(f^{n}\right)=\operatorname{Ker}\left(f^{n+1}\right)=\ldots$). The ring R is strongly Hopfian (respectively bounded) if it so as an R-module. Let R be a commutative unitary ring. We show that $R[[X]]$ is strongly Hopfian bounded if and only if R has a strongly Hopfian bounded extension T such that $I_{c}(T)$ contains a regular element of T. We deduce that if $R[[X]]$ is strongly Hopfian bounded, then so is $R[[X, Y]]$ where X, Y are two indeterminates over R. Also we show that if R is embeddable in a zerodimensional strongly Hopfian bounded ring, then so is $R[[X]]$ (this generalizes most results of S . Hizem). For a chained ring R, we show that $R[[X]]$ is strongly Hopfian if and only if R is strongly Hopfian.

References

[1] Hmaimou, A., Kaidi, A., Sanchez Campus, A, Generalized fitting modules and rings. J. Algebra. 308 (2007), 199-214.
[2] S. Hizem, Formal power series over strongly Hopfian rings. Comm. Algebra. (1), 39 (2011):279-291.

[^78]
Algebraic Schur complement approach for a finite volume discritization of a non linear 2 d convection diffusion equation

Samir KHALLOUQ
Faculty of Sciences and Technology
Errachidia, Morocco
samir.khallouq@gmail.com

(With H. Belhadj)

Abstract

This work deals with a domain decomposition approach for a nonlinear convection diffusion equation. The domain of calculation is decomposed into $q \geq 2$ non-overlapping sub-domains. On each sub-domain the linear part of the equation is descretized using implicit finite volumes scheme (FV) and the non linear convection term is integrated explicitly into the scheme. As non-overlapping domain decomposition, we propose the Schur Complement (SC) Method. The proposed approach is applied for solving the local boundary subproblems. The numerical experiments applied to Burgers equation show the interest of the method compared to the global calculation. The proposed algorithm has both the properties of stability and efficiency. It can be applied to more general nonlinear PDEs and can be adapted to different FV schemes.

References

[1] A. Quarteroni, A.Valli, Domain decomposition methods for partial differential equations, Clarendon Press, Oxford, 1999.
[2] A. Quarteroni, A.Valli, Theory and application of stecklov-poincarré operators for boundary value problems, 179-203. Kluwer Academic Publishers, 1991.
[3] Michael Schafer, Computational Engineering - Introduction to Numerical Methods. SpringerVerlag, Berlin, Heidelberg, 2006.
[4] P. Tarek, A. Mathew, Lecture Notes in Computational Science and Engineering 61- Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. SpringerVerlag, Berlin, Heidelberg, 2008.
[5] S. Khallouq and H. Belhadj, Schur Complement Technique for Advection-Diffusion Equation Using Matching Structured Finite Volumes, Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 51-62 (2013).
[6] V. Dolejší, M. Feistauer, J. Hozman, Analysis of semi-implicit DGFEM for nonlinear convectiondiffusion problems on nonconforming meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2813-2827.
[7] M.Bejček, M.Feistauer, T.Gallouët, J.Hájek, and R. Herbin, Combined triangular FVtriangular FE method for nonlinear convection-diffusion problems, ZAMM Z. Angew. Math. Mech. 87, No. 7, 499-517 (2007) / DOI 10.1002/zamm. 200610332
[8] A. Kufner, O. John, S. Fučík, Function Spaces, Academia, Prague, 1977.

[^79]
Some commutativity results for prime near- ring involving derivations

Moharram ALI KHAN
Department of Mathematics and Computer Sciences
Umar Musa Yar'adua University
Katsina
Katsina, Nigeria
mkhan91@gmail.com
(With A. O. Aliyu)

Abstract

In this talk we investigate some commutativity results for a prime near-ring as follows: Let N be a zero-symmetric left prime near-ring and δ : $N \rightarrow N$ a derivation such that(i) $\delta([a, b])=[a, \delta(b)] ;$ (ii) $[a, \delta(b)]=[a, b] ;$ (iii) $[a, \delta(b)] \in Z(N) ;($ iv $) \circ \delta(b) \in Z(N)$; and (v) $a \circ \delta(b)=b \circ a \forall a, b \in N$. This paper first establish the commutativity of prime near-rings satisfying one of the above conditions [(i) - (v)] that associates with a derivation γ on N.Secondly, it is shown that N is a commutative ring if a prime near-ring N admits a derivation δ with a semi group ideal of N involving (i), (ii), and other related identities. In addition, examples are given to validate the assumptions in the hypothesis, which are not superfluous. Finally, we close our discussion with some open problems

[^80]
Pure ideals in ordered Γ-semigroups and right regular weakly ordered Γ-semigroups

Noor Mohammad KHAN

Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
nm_khan123@yahoo.co.in
(With A. Mahboob)

Abstract

We introduce the notions of pure ideals, left(right) weakly pure ideals and purely prime ideals in an ordered Γ-semigroup and study some of their properties. We, then, define a right weakly regular ordered Γ-semigroup and study various interplays between ideals, bi-ideals and interior ideals within this ordered semigroup. Finally, we characterize right weakly regular ordered Γ-semigroups through ideals, bi-ideals and interior ideals of an ordered Γ-semigroup.

[^81]
Gorenstein injective modules with respect to a semidualizing bi-module

Ahmad KHOJALI
Department of Mathematical Sciences
University of Mohaghegh Ardabili
Iran
khojali@uma.ac.ir

Abstract

Let ${ }_{S} V_{R}$ a semidualizing $(S-R)$-bimodule over the associative rings R and S and let $\mathcal{I}_{V}(R):=\left\{\operatorname{Hom}_{S}(V, I): I\right.$ is an injective S-module $\}$. By a V Gorenstein injective module we mean an R-module, N say, possessing a $\operatorname{Hom}_{R}\left(\mathcal{I}_{V}(R),-\right)$ and $\operatorname{Hom}_{R}\left(-, \mathcal{I}_{V}(R)\right)$ exact exact complex $\cdots \rightarrow I_{1} \xrightarrow{d_{0}} I_{0} \rightarrow I^{0} \xrightarrow{d^{0}} I^{1} \rightarrow \cdots$ such that $I_{i}, I^{i} \in \mathcal{I}_{V}(R)$ and $N \cong \operatorname{Im}\left(I_{0} \rightarrow I^{0}\right)$. Some homological properties of the class of V-Gorenstein injective modules and its connection with the Auslander class $\mathcal{A}_{V}(R)$ and the class of strongly V-Gorenstein injective modules is investigated. Also, a characterization of finiteness of V-Gorenstein injective injective dimension in terms of vanishing of the relative cohomological functor $\operatorname{Ext}_{\mathcal{I}_{V}(R)}(-, N)$ is given.

References

[1] D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210, (2007), 437-445.
[2] Edgrar E. Enochs and Overtoun M. G. Jenda, Relative Homological Algebra, De Gruyter Exp. Math. vol. 30, Walter de Gruyter, Berlin 2000.
[3] Edgar E. Enochs and Overtoun M. G. Jenda, Covers and Envelopes by V-Gorenstein Modules. Comm. Algebra 33, (2005), 4705-4717.
[4] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories. J. London Math. Soc. 77, (2008), 481-502.
[5] X. Yang and Z. Liu, V-Gorenstein projective, injective and flat modules. Rocky Mountain J. Math. 42, (2012), 2075-2098.

[^82]
On some steintiz properties on finitely generated submodules of free modules

Farid KOURKI
Regional Centre of Trades Education and Training
Larach, Morocco
kourkifarid@hotmail.com

Abstract

Let R be a commutative ring and let M be an R-module. Following M. Lazarus [1], we say that M satisfies property (P) if any two maximal linearly independent subsets of M have the same cardinality. In this talk we give conditions on R under which any finitely generated submodule of a free R-module satisfies property (P).

References

[1] D.D. Anderson and M. Winder, Idealization of a module, J. Commut. Algebra 1 (1) (2009) 3-56.
[2] J.A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, Inc., New York, 1988.

[^83]
Généralisation d'une congruence d'Emma Lehmer

Khaldi LAALA

Laboratoire LA3C, USTHB
Univresité de Bouira
Médéa, Algeria
khaldi.math@gmail.com
(With B. Farid)

Résumé. L'étude de la somme $\sum_{r=1}^{\frac{p-1}{2}} r^{2 k}$, modulo un nombre premier impair p
a fait et continue de faire l'objet de nombreux travaux. En 1938, Emma Leh-
mer obtenant pour cette somme une congruence modulo p^{3} faisant intervenir les
nombres et polynomes de Bernoulli.Dans cette communication, nous développons
une nouvelle approche nous permettant d'améliorer la congruence d'Emma Leh-
mer en une congruence modulo p^{s}, avec $s \in\{4,5\}$.

Références

[1] E. Lehmer. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. of Math., $39: 350-360,1938$.
[2] Hui-Qin Can,Hao Pan, Note on some congruence of Lehmer, J. Number Theory 129(8) (2009) 1813-1819.
[3] Z.H. Sun. Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math, 105 no. 1-3 : 193-223, 2000.

[^84]
Nonlinear commutant preservers

Aziz LAHSSAINI

Department of Mathematics
Faculty of Sciences Dhar Mahraz
University Sidi Mohammed Ben Abdellah
Fez, Morocco
aziz.lahssaini@gmail.com

(With H. Benbouziane, Y. Bouramdane, and M. E. Kettani)

Abstract. Let $\mathfrak{B}(X)$ be the algebra of all bounded linear operators on Banach space X. We determine the form of maps (not necessarily linear) $\phi: \mathfrak{B}(X) \rightarrow$ $\mathfrak{B}(X)$ which satisfying the following condition of preservation $\{\phi(A) \diamond \phi(B)\}^{\prime}=$ $\{A \diamond B\}^{\prime}$ for different kinds of binary operations \diamond on operators such as the product $A B$, triple product $A B A$, and Jordan product $A B+B A$ for all $A, B \in \mathfrak{B}(X)$ where $\{A\}^{\prime}$ is the set of operators commuting with $A \in \mathfrak{B}(X)$.

References

[1] H. Benbouziane and M. Ech-chérif El Kettani, maps on matrices compressing the local spectrum in the spectrum. Linear Algebra Appl. 475 (2015), 176-185.
[2] A. Bourhim and J. Mashreghi, A survey on preservers of spectra and local spectra. Contemp. Math, 638 (2015), 45-98.
[3] M. D. Choi, A. A. Jafarian and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87(1987)227-241.
[4] M.D. Dolinar, S.P. Du, J.C. Hou and P. Legica, General preservers of invariant subspace lattices, Linear Algebra Appl. 429(2008)100-109.
[5] A.A. Jafarian and A.R. Sourour, Linear maps that preserve the commutant, double commutant or the lattice of invariant subspaces, Linear Multi-linear Algebra, 38(1994)117-129.
[6] A. A. Jafarian and A. R. Sourour, Spectrum preserving linear maps, J. Funct. Anal. 66(1986)255-261.
[7] C.-K. Li, P. \check{S} emrl and N.-K. Tsing, Maps preserving the nilpotency of products of operators, Linear Algebra Appl. (2007)222-239.
[8] M. Omladič and P. Šemrl, Spectrum preserving additive maps, Linear Algebra Appl. 153(1991)67-72.
[9] P. Šemrl, Linear maps that preserve the nilpotent operators, Acta Sci. Math. (Szeged) 61(1995)523-534
[10] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71(2005)781819.
[11] A.R. Sourour, Invertibility preserving linear maps on $L(X)$, Trans. Amer. Math. Soc. 348(1996)13-30.

[^85]
Zero-divisor graphs in commutative rings

Rachid LARHRISSI

Department of Mathematics, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
r.larhrissi@gmail.com

Abstract

In this talk, we present the recent and active area of zero-divisor graphs of commutative rings. Notable algebraic and graphical results are mentioned.

References

[1] D.F. Anderson, On the diameter and girth of a zero divisor graph II. Houston J Math 34 (2008) 361-371.
[2] D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring. J Algebra 36 (2008) 3073-3092.
[3] D.F. Anderson, M. Axtell, J. Stickles, Zero-divisor graphs in commutative rings. In: Fontana M, Kabbaj SE, Olberding B, Swanson I, editors. Commutative Algebra, Noetherian and NonNoetherian Perspectives. New York, NY, USA: Springer-Verlag, 2010, pp. 23-45.
[4] D.F. Anderson , P.S. Livingston, The zero-divisor graph of a commutative ring. J Algebra 217 (1999) 434-447.
[5] N. Ashrafi, H.R. Maimani, M.R. Pournaki, S. Yassemi, Unit graphs associated with rings, Comm Algebra 38 (2010) 2851-2871.

[^86]
A computation in temperley-Lieb algebra

Dong-il LEE
Department of Mathematics
Seoul Women's University
Seoul 01797, Korea
dilee@swu.ac.kr
(With S. Kim)

Abstract

For Hecke algebras and Temperley-Lieb algebras of type A as well as for Ariki-Koike algebras, their Gröbner-Shirshov bases were constructed in $[2,3]$. In this note, we deal with Temperley-Lieb algebras of type B, extending the result in $[2, \S 6]$. By completing the relations coming from a presentation of the Temperley-Lieb algebra, we find its Gröbner-Shirshov basis to obtain the corresponding set of standard monomials. The explicit multiplication table between the monomials follows naturally.

References

[1] G. Feinberg, K.-H. Lee, Fully commutative elements of type D and homogeneous representations of KLR-algebras, J. Comb. 6 (2015), 535-557.
[2] S.-J. Kang, I.-S. Lee, K.-H. Lee, H. Oh, Hecke algebras, Specht modules and Gröbner-Shirshov bases, J. Algebra 252 (2002), 258-292.
[3] , Representations of Ariki-Koike algebras and Gröbner-Shirshov bases, Proc. London Math. Soc. 89 (2004), 54-70.
[4] S. Kim, K.-H. Lee, S.-j. Oh, Fully commutative elements of type B, preprint (2015).
[5] J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), 1285-1332.
[6] H. N. V. Temperley, E. H. Lieb, Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280.

[^87]
Ad-nilpotent elements of semiprime rings with involution

Tsiu-Kwen LEE
Department of Mathematics
National Taiwan University
Taipei 106
Taiwan
tklee@math.ntu.edu.tw

Abstract

Let R be an $n!$-torsion free semiprime ring with involution $*$ and with extended centroid C, where $n>1$ is a positive integer. We characterize $a \in K$, the Lie algebra of skew elements in R, satisfying $\left(\operatorname{ad}_{a}\right)^{n}=0$ on K. This generalizes both Martindale and Miers' theorem [?] and the theorem of Brox et al. [?]. To prove it we first prove that if $a, b \in R$ satisfy $\left(\operatorname{ad}_{a}\right)^{n}=\operatorname{ad}_{b}$ on R, where either n is even or $b=0$, then $(a-\lambda)^{\left[\frac{n+1}{2}\right]}=0$ for some $\lambda \in C$.

[^88]
Global dimension of bi-amalgamated algebras

Khalid LOUARTITI

Department of Mathematics
Faculty of Sciences, BEN M'SIK,
Box 7955, Sidi Othmam
University Hassan II, Casablanca, Morocco
khalid.louartiti@gmail.com
(With M. Tamekkante)

Abstract. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. The bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) \mid a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\}
$$

The aim of this paper is to characterize the global dimension of bi-amalgamated algebras.

References

[1] J. Milnor, Introduction to Algebraic K-theory, Annals of Mathematics Studies, Number 72, Princeton University Press, Princeton, N . J., 1971.
[2] A. N. Wiseman, Projective modules over pullback rings, Math. Proc. Cambridge Phil. Soc., 97 (1985), 399-406.
[3] S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals, prepint.
[4] E. Kirkman, J. Kuzmanovich. On the global dimension of fibre products, Pacific J. Math., 134 (1988), 121-132.
[5] M. D'Anna, C. A. Finacchiaro, and M. Fontana; Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Applied Algebra 214(2010), 1633-1641
[6] M. D'Anna, A construction of Gorenstein rings, J. Algebra 306(2) (2006), 507-519.
[7] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3) (2007), 443-459.
[8] S. Glaz, Commutative Coherent Rings. Lecture Notes in Math. 1371. Springer-Verlag, Berlin, 1989.
[9] S. Scrivanti, Homological dimension pf pullbacks. Math Scand. 71 (1992), 5-15.

[^89]
On (σ, δ)-skew McCoy modules
 Mohamed LOUZARI

Department of Mathematics
Faculty of Sciences
Abdelmalek Essaadi University
BP. 2121 Tetouan, Morocco
mlouzari@yahoo.com

Abstract

Let (σ, δ) be a quasi derivation of a ring R and M_{R} a right R-module. In this work, we introduce the notion of (σ, δ)-skew McCoy modules which extends the notion of McCoy modules and σ-skew McCoy modules. This concept can be regarded also as a generalization of (σ, δ)-skew Armendariz modules. Some properties of this concept are established and some connections between (σ, δ) skew McCoyness and (σ, δ)-compatible reduced modules are examined. Also, we study the property (σ, δ)-skew McCoy of some skew triangular matrix extensions $V_{n}(M, \sigma)$, for any nonnegative integer $n \geq 2$. As a consequence, we obtain: (1) M_{R} is (σ, δ)-skew McCoy if and only if $M[x] / M[x]\left(x^{n}\right)$ is $(\bar{\sigma}, \bar{\delta})$-skew McCoy, and (2) M_{R} is σ-skew McCoy if and only if $M[x ; \sigma] / M[x ; \sigma]\left(x^{n}\right)$ is $\bar{\sigma}$-skew McCoy.

References

[1] A. Alhevaz and A. Moussavi, On skew Armendariz and skew quasi-Armendariz modules, Bull. Iran. Math. Soc. 1 (2012), 55-84.
[2] S. Annin, Associated primes over skew polynomials rings, Comm. Algebra 30 (2002), 25112528.
[3] S. Annin, Associated primes over Ore extension rings, J. Algebra appl. 3 (2004), 193-205.
[4] M. Başer, T. K. Kwak and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), 4026-4037.
[5] L. Ben Yakoub and M. Louzari, Ore extensions of extended symmetric and reversible rings, Inter. J. of Algebra 3, 2009, No.9, 423-433.
[6] A. M. Buhphang and M. B. Rege, semicommutative modules and Armendariz modules, Arab J. Math. Sciences 8 (2002), 53-65.
[7] J. Cui and J. Chen, On McCoy modules, Bull. Korean Math. Soc. 48 (2011), No. 1, 23-33.
[8] J. Cui and J. Chen, On α-skew McCoy modules, Turk. J. Math. 36 (2012), 217-229.
[9] E. Hashemi, Extensions of Baer and quasi-Baer modules, Bull. of the Iran. Math. Soc. 37 (2011), No. 1, 1-13.
[10] C. Y. Hong, N. K. Kim and T. K. Kwak, On Skew Armendariz Rings, Comm. Algebra 31(1) (2003), 103-122.
[11] N.H. McCoy, Annihilators in polynomial rings, Amer. math. monthly 64 (1957), 28-29.
[12] A. R. Nasr-Isfahani, On Skew Triangular Matrix Rings, Comm. Algebra 39 (2011), 4461-4469
[13] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
[14] T. Y. Lam, A. Leroy and J. Matczuk, Primeness, semiprimeness and the prime radical of Ore extensions, Comm. Algebra 25 (8) (1997), 2459-2506.
[15] T. K. Lee and Y. Lee, Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and App. Math. 236 Dekker, New york, (2004).
[16] A. Leroyy and J. Matczuk, On induced modules over Ore extensions, Comm. Algebra 32(7) (2004), 2743-2766.
[17] C. P. Zhang and J. L. Chen, σ-skew Armendariz modules and σ-semicommutative modules, Taiwanese J. Math. 12(2) (2008), 473-486.
[18] R. Zhao and Z. Liu, Extensions of McCoy Rings, Algebra Colloq. 163 (2009), 495-502.

Mathematics Subject Classification (2010): 16S36, 16 U 80.
Key words: McCoy module, (σ, δ)-skew McCoy module, semicommutative module, Armendariz module, (σ, δ)-skew Armendariz module, reduced module.

S-Prime ideals over S-Noetherian ring

Achraf MALEK
Faculty of sciences of Monastir, Tunisia
achraf_malek@yahoo.fr

Abstract

Let A be a commutative ring with identity and $S \subseteq A$ a multiplicative subset. In this paper we introduce the concept of S-prime ideal which is a generalization of prime ideal. Let I be an ideal of A disjoint with S. We say that I is an S-prime ideal if there exists $s \in S$ such that for all $a, b \in A$ with $a b \in I$ then $s a \in I$ or $s b \in I$. In this work we show that S-prime ideals enjoy analogs of many properties of prime ideals and we study then over S-Noetherian rings.

References

[1] D.D. Anderson, T. Dumitrescu, S-Noetherian rings. Comm. Algebra, 30 (2002) 4407 - 4416.
[2] D.D. Anderson, D.J. Kwak, M. Zafrullah. Agreeable domains. Comm. Algebra, 23 (1995) 4861-4883.
[3] A. Hamed, S. Hizem. S-Noetherian rings of the forms $\mathcal{A}[X]$ and $\mathcal{A}[[X]]$. Comm. Algebra, 43 (2015) 3848 - 3856.
[4] A. Hamed, S. Hizem. Modules satisfying the S-Noethrian property and S-accr. Comm. Algebra, 44 (2016) 1941 - 1951.
[5] J.W. Lim, D.Y. Oh. S-Noetherian properties of composite ring extensions. Comm. Algebra, 43 (2015) $2820-2829$.

[^90]
Domains with invertible-radical factorization

Ahmed MALIK TUSIF

Abdus Salam School of Mathematical Sciences GCU
Lahore-Pakistan
tusif.ahmed@sms.edu.pk
(With T. Dumitrescu)

Abstract

In this paper we study those integral domains in which every proper ideal can be written as an invertible ideal multiplied by a nonempty product of proper radical ideals.

[^91]
A new framework for Zakat calculation using mathematics equations based on XML technology

Abdelaziz MAMOUNI
Department of Mathematics and Computer Sciences
Faculty of Sciences Ben M'Sik
Hassan II University
Casablanca, Morocco
mamouni.abdelaziz@gmail.com
(With A. Marzak and Y. RAKI)

Abstract

Zakat is one of the five pillars of Islam, and is expected to be paid by all practicing Muslims who have the financial means. This paper suggests an advanced Islamic framework for the purpose of calculating the amount owed to pay using mathematics equation. The proposed framework can be used in two ways. Firstly, the full Zakat calculator for calculating amount of all Zakatable wealth such as cash in hand, business, silver and gold. Secondly, the partial Zakat calculator for calculating amount owed to pay of a particular wealth such as gold, precious stones, silver, landed property, and more. Moreover, it allows calculating the Zakat with the easy, accurate and elaborate way and getting step by step instructions on how to accurately calculate the amount of Zakat. Furthermore, it helps to understand and handle the Zakatable wealth in the most effective and efficient way. This paper also presents some cases study scenarios emphasizing the benefits enabled by the proposed framework. Experimental results show that, compared with traditional solutions, our framework is more scalable and highperformance.

References

[1] A. Mamouni, A. Marzak, and Z. A. Haddad, ZCMGProcess: ZCM-based process for the Zakat calculation models generation (ZCMGenerator a framework supporting this approach), in 2016 11th International Conference on Intelligent Systems: Theories and Applications (SITA), 2016, pp. 1-6.
[2] K. A. Ali, XML Technology, 1983.
[3] A. Mamouni, A. Marzak, Z. Al Haddad, and Y. Boukouchi, Meta-Model for Zakat Calculation Platforms (ZCP) Based on the ADM Approach, Jun-2016.
[4] A. Mamouni, A. Marzak, Z. Al Haddad, and A. Belangour, A meta-model for automation of the deduction of judgments relating to Zakat, Dec-2015.
[5] A. Mamouni, A. Marzak, Z. Al Haddad, and Y. Boukouchi, ZCMGenerator: Framework for Generating Zakat Calculation Models based on the MDA Approach, Sep-2016.
[6] A. Huraimel, M. J. Zemerly, and A. Al-Hammadi, Islamic Zakah Application for Mobile Devices, presented at the The 3rd International Conference on Information Technology ICIT 2007, AL-Zaytoonah University, Amman, Jordan, 2007.
[7] A. Al-Riyami, A. A. H. K. Al-Amri, and K. A. Al-Busaidi, Zakat Expert System, Vol. One, p. 31, 2014.

[^92]
Another Gorenstein analogue of flat modules

Lixin MAO
Department of Mathematics and Physics Nanjing Institute of Technology
China
maolx2@hotmail.com

Abstract

In this communication, we consider the notion of algebraic zerodivisors in special algebras that are, the hermitian Banach algebras. Let $A_{+}^{0}=$ $\left\{x \in A: x=x^{*}\right.$ and $\left.S p(x) \subset \mathbb{R}^{+*}\right\}$ and $A_{+}=\left\{x \in A: x=x^{*}\right.$ and $\left.S p(x) \subset \mathbb{R}^{+}\right\}$ the convex cone of positive elements of a hermitian Banach algebra A. We show that if A_{+}does not contain zero divisors then, $\operatorname{Sym}(A) \cap G$ is the disjoint union of A_{+}^{0} and $\left(-A_{+}^{0}\right)$. In other words a invertible and self-adjont element is either strictly positive or strictly negative. We remark that, in a hermitian Banach algebra without zero-divisors, any self-adjoint element whose spectrum contains both negatif an positif real numbers is necessarily not invertible. So the existence of such elements informs us for the existence of zero-divisors. As a corollary we obtain that the spectrum of each self-adjoint element will be an interval when A_{+}contains no zero divisors. Finally we show that a hermitian Banach algebra containing no algebraic zero divisors and for which every positive element has a positive square root is isomorphic to $\mathbb{C}+\operatorname{Rad}(A)$ (The spectrum of each element contains a single complex number)

References

[1] F. F. Bonsall, J. Duncan, Complete Normed Algebra, Ergebnisse der Mathematik. Band 80, Springer Verlag (1973).
[2] A. El Kinani, M. A. Nejjari, M. Oudadess, On classifying involutive locally m-convex algebras, via cones, Bull. Belg. Math. Soc. Simon Stevin 13, No. 4, (2006) 681-687
[3] R. A. Hirschfeld, and S. Rolew390cz, A class of non-commutative Banach algebras without divisors of zero, Bull. Acad. Polon. Sci., 17 (1969), 751-753.
[4] V. Ptàk, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290

[^93]Generalization of direct injective modules Sanjeev KUMAR MAURYA
Department of Mathematical Sciences
IIT(BHU)Varanasi
Varanasi 221005, India
sanjeevm50@gmail.com
(With A. J. GuptaI)

Abstract

In this paper we generalize the concept of direct injective (or C2) modules to finite direct injective modules. Some properties of finite direct injective modules are investigated. We show that direct summand of finite direct injective modules inherits the property, while direct sum need not. Some classes of rings are characterize with the help of finite direct injective modules.

[^94]
The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

Stark units and Iwasawa theory

Youness MAZIGH
Département de mathématiques
Faculty of Sciences
Meknes, Morocco
mazigh.younes@gmail.com

Abstract

In this talk, we will discuss the relationship between the characteristic ideal of the χ-quotient of the projective limit of the ideal class groups to the χ quotient of the projective limit of units modulo Stark units, in the non semi-simple case, for some $\overline{\mathbb{Q}_{p}}$-irreducible characters χ.

References

[1] J. Assim,Y.Mazigh, H.Oukhaba, Théorie d'Iwasawa des unités de Stark et groupe de classes International Journal of Number Theory. DOI: 10.1142/S1793042117500634
[2] Y. Mazigh, Iwasawa theory of Rubin-Stark units and class groups. manuscripta math. (2016) DOI: 10.1007/s00229-016-0889-0.
[3] B.Mazur, A.Wiles, Class fields of abelian extensions of \mathbb{Q}. Invent. Math. 76 (1984), 179-330.
[4] K. Rubin, The "main conjectures" of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), 1, 25-68.
[5] K.Rubin, Euler systems. Annals of Mathematics Studies, 147. Hermann Weyl Lectures. The Institute for Advanced Study. Princeton University Press, Princeton, 2000.
6] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en $s=0$. Birkhäuser Boston Inc, 1984. Lecture notes edited by Dominique Bernardi and Norbert Schappacher.

[^95]
Théorème de Gel'fand-Mazur-Kaplansky

Abderrahim MEKRAMI

Departement de mathematics
Faculty of Sciences Ain Chock
Casablanca, Morocco
gozovish@gmail.com

Abstract

Résumé. Le théorème classique de Gel'fand-Mazur affirme que toute \mathbb{C}-algèbre associative normée de division est isomorphe à \mathbb{C}. Nous donnons une esquisse de sa démonstration puis prouvons le théorème de Gel'fand-Mazur-Kaplansky qui affirme que toute \mathbb{R}-algèbre associative normée de division est isomorphe à \mathbb{R}, \mathbb{C} ou \mathbb{H} (l'algèbre réelle des quaternions de Hamilton).

[^96]
Approximation of a special function by the continued fractions

 Said MENNOUIbn Toufail University, FS, Laboratory AMGNCA, Kenitra, Morocco
saidmennou@yahoo.fr

(With A. Chillali and A. Kacha)

Abstract

In this work we will introduce the notion of continued fractions, which plays a very important role in mathematical domains such as: the approximation of irrationals, the resolution of equations, the study of transcendental numbers, the fractional matrix calculus, etc. We will give an approximation of a special function using the theory of continued fractions.

References

[1] A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland and W. B. Jones, Handbook of Continued Fractions for Special Functions. Springer Science+Business Media B.V.(2008).
[2] Nicholas J. Higham, Functions of Matrices theory and Computation. Society for Industrial and Applied Mathematics.(2008).
[3] Mustapha Raissouli, Ali Kacha, Convergence of matrix continued fractions. Linear Algebra and its Applications.(2000).

[^97]
Real pre-Hilbert algebras satisfying $\left\|x^{2}\right\|=\|x\|^{2}$

Abdelhadi MOUTASSIM
Regional Centre of Trades Education and Training
Settat, Morocco
moutassim-1972@hotmail.fr

Abstract

Let A be a real (non-associative) algebra which is normed as real vector space, with a norm $\|$.$\| deriving from an inner product. In this talk we$ characterize the real pre-Hilbert commutative algebras without divisors of zero and containing a nonzero element a such that $\|a x\|=\|a\|\|x\|$ and $\left\|x^{2}\right\|=\|x\|^{2}$ for any $x \in A$. This generalizes a well-known theorem by Urbanik and Wright asserting that every real commutative absolute valued algebra is isomorphic to \mathbb{R}, \mathbb{C} or $\stackrel{*}{\mathbb{C}}[6]$. We also show that every real pre-Hilbert normed algebraic algebra of degree 2 and containing a nonzero central idempotent f such that $\|f\|=1$ is flexible and satisfying $\left\|x^{2}\right\|=\|x\|^{2}$ for any $x \in A$. The assumptions algebraic algebra and of degree 2 are essential and the counters-examples are given in $[2,3]$. Moreover, we classify the real pre-Hilbert algebras without divisors of zero and having dimension 2 such that $\left\|x^{2}\right\|=\|x\|^{2}$ for any $x \in A$. This last generalizes previously known results of A. Rodriguez [5]. Finally, we prove that every real algebra, with unit element e, without divisors of zero, containing a nonzero central element a which is linearly independent to e, and algebraic of degree $\neq 8$, is isomorphic to \mathbb{C}. The latter completes the results done by O. Diankha et al [1] and generalizes our results given in [4].

References

[1] O. Diankha, M. Traoré, M. I. Ramírez and A. Rochdi, Four-dimensional real third-power associative division algebras, Communications in algebra. 44 (2016), 3397-3406.
[2] M. L. EL-MALLAH, Semi-algebraic absolute valued algebras with an involution, Communications in Algebra. 31 (2003), 3135-3141.
[3] A. Moutassim and M. Benslimane, Four dimensional absolute valued algebras containing a nonzero central idempotent or with left unit, International Journal of Algebra, Vol. 10 (2016), no. 11, 513-524.
[4] A. Moutassim and M. Benslimane, Generalization of the Hopf commutative theorem, Communications in algebra. 45 (2017), 883-888.
[5] A. Rodríguez, Absolute valued algebras, and absolute valuable Banach spaces, Advanced Courses of Mathematical Analysis I, World Sci. Publ.Hackensack, NJ (2004), 99-155.
[6] K. Urbanik and F. B. Wright, Absolute valued algebras, Proc. Amer. Math. Soc. 11 (1960), 861-866.

[^98]
Tri-additive maps and local generalized (α, β)-derivations

Muzibur Rahman MOZUMDER
Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
muzibamu81@gmail.com
(With M. R. Jamal)

Abstract

Let R be a prime ring with nontrivial idempotents. We characterize a tri-additive map $f: R^{3} \rightarrow R$ such that $f(x, y, z)=0$ for all $x, y, z \in R$ with $x y=y z=0$. As an application, we show that in a prime ring with nontrivial idempotents, any local generalized (α, β)-derivation or generalized Jordan triple (α, β)-derivation is a generalized (α, β)-derivation.

References

[1] K. I. Beidar, W.S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[2] H. E. Bell and W.S. Martindale III, Centralizing Mapping of Semiprime Rings, Canad. Math. Bull. 30 (1987), 92-101.
[3] M. Bresar, Characterizing homomorphisms, derivations, and multipliers in rings with idempotens, Proc. Royal Soc. Edingburg A 137 (2007), 9-21.
[4] M. Brešar and J. Vukman, Jordan (Θ, ϕ)-derivations, Glas. Mat. Ser. III 26(46) (1991), 13-17.
[5] J.-C. Chang, On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math. 7 (2003), 103-113.
[6] M. A. Chebotar, W,-F. Ke and P.-H. Lee, Maps characterized by action on zero products, Pacific
J. Math. 216 (2004), 217-228.

[^99]A study of non-additive maps in Γ-structure of rings and near-rings Mohammad MUEENUL HASNAIN
Department of Mathematics
Faculty of Natural Sciences
Jamia Millia Islamia (A Central University)
New Delhi, India
mhamu786@gmail.com

Abstract

The purpose of this article is to prove some results which are of independent interest and related to non-additive maps on Γ - structure of rings and near-rings. Further, examples are given to demonstrate that restrictions imposed on the hypothesis of several results are not superfluous.

[^100]
On centrally-extended multiplicative (generalized)-(α, β-derivations in semiprime rings

Najat MUTHANA
Department of Mathematics, Faculty of Sciences, King Abdulaziz University
Jeddah, KSA
Nmuthana@kau.edu.sa
(With Z. Alkhamisi)

Abstract

Let R be a ring with center Z and α, β and d mappings of R. A mapping F of R is called a centrally-extended multiplicative (generalized)-(α, β)derivation associated with d if $F(x y)-F(x) \alpha(y)-\beta(x) d(y) \in Z$ for all $x, y \in$ R. The objective of the present paper is to study the following conditions: (i) $F(x y) \pm \beta(x) G(y) \in Z$, (ii) $F(x y) \pm g(x) \alpha(y) \in Z$ and (iii) $F(x y) \pm g(y) \alpha(x) \in Z$ for all x, y in some appropriate subsets of R, where G is a multiplicative (generalized)(α, β)-derivation of R associated with the map g on R.

References

[1] A. Ali, B. Dhara, S. Khan and F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hecettepe J. Math. Stat. 44 (6) (2015) 1293-1306.
[2] B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86 (1-2) (2013) 65-79.
[3] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2) (1997) 339-345.
[4] M. S. Tammam El-Sayiad, N. M. Muthana and Z. S. Alkhamisi, On rings with some kinds of centrally-extended maps, Beiträge Algebra Geom. Article No. 274 (2015) 1-10.

[^101]
Continued fraction expansions of the quasi-arithmetic power means of positive matrices with parameter (\mathbf{p}, α)

Badr NEJJAR

Department of Mathematics
Faculty of Sciences of Kenitra
University Ibn Toufail
Morocco
bader.nejjar@gmail.com
(With A. Kacha and S. Salhi)

Abstract

The goal of this paper is to provide an effecient method for computing the quasi-arithmetic power means of two positive matrices with parameter (p, α) by using the continued fractions with matrix arguments. Furthermore, we give some numerical examples wich illustrated the theorical results.

References

[1] T. Calvo, R. Mesiar," Generalized medians", Fuzzy Set Syst 124 (2001), no. 1, 59-64.
[2] G. H. Golub and C. F. Van Loan, "Matrix Computations", University Press, Baltimore, MD, USA, third edition (1996).
[3] R. A. Horn, C. R. Johnson, " Matrix Analysis", Cambridge university Press, Cambridge (1985).
[4] W. B. Jons and W. J. Thron, "Continued Fractions, Analytic Theory and Applications", Addison-Westly Publishing Company., 5 (1980).
[5] L. Lorentzen, H. Waadeland, "Continued fractions with applications", Elsevier Science Publishers., (1992.)

[^102]
Factorization with respect to multiplicatively closed subsets of a ring which split a module

Ashkan NIKSERESHT
Department of Mathematics
Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
ashkan_nikseresht@yahoo.com

Abstract

Let R be a commutative ring, S a saturated multiplicatively closed subset (SMCS for short, sometimes called a divisor-closed multiplicative submonoid) of R (we let $0 \in S$, that is, $S=R$) and M a unitary R-module. Also here $\mathrm{Z}(M)$ is the set of zero-divisors of M. Many have tried to find relations between factorization properties of R (such as unique, finite or bounded factorization) and those of $S^{-1} R$, for a SMCS S of R (see, for example, [1]). The aim of this research is to show how generalizing factorization properties to modules (see $[2,4]$) and with respect to a SMCS ([3]), could be utilized to give a better insight on this problem.

In this talk, first we briefly review the notations and definitions of S-factorization in modules. Then using these notions we present the concept of SMCS's which split a module and use it to prove: "Suppose that $S \subseteq S^{\prime}$ are two SMCS's of R such that S splits M and $S \cap \mathrm{Z}(M)=S \cap \mathrm{Z}(R)=\emptyset$. Let $\mathbf{P} \in\{$ présimplifiable, BFM, FFM, HFM, UFM $\}$. Then M is $S^{\prime}-\mathbf{P}$ if and only if M is $S-\mathbf{P}$ and $S^{-1} M$ is $S^{-1} S^{\prime}$-P." In the case $S^{\prime}=R$, this gives some Nagata type theorems on factorization properties of modules. Finally, by an example ($R=A+x B[x]$ and $S=A^{*} \cup\left\{b x^{n} \mid b \in B^{*}, n \in \mathbb{N}\right\}$, where $A \subseteq B$ are two domains) we show how our results could be applied in the case that $M=S^{\prime}=R$, to study factorization properties of a domain. We give new and simpler proofs for previously known theorems which characterize when R in this example is a BF, FF, HF or UF domain.

References

[1] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains II, J. Algebra, 152 (1992), 78-93.
[2] -, Factorization in commutative rings with zero divisors, II, Lecture Notes in Pure and Applied Math., Marcel Dekker, 189 (1997), 197-219.
[3] A. Nikseresht and A. Azizi, Factorization with respect to a divisor-closed multiplicative submonoid of a ring, Turk. J. Math., accepted for publicatoin.
[4] A. Nikseresht and A. Azizi, On factorization in modules, Comm. Algebra, 39(1) (2011),

[^103]
Containment of Fuzzy subgroups in a direct product of finite symmetric groups

Ogiugo MIKE EKPEN
Department of Mathematics
University of Ibadan
Ibadan, Nigeria
ekpenogiugo@gmail.com

Abstract

One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups structure and count the number of all distinct fuzzy subgroups of a finite groups. This area of research has enjoyed a rapid development in the last few years. First, an equivalence relation on the set of all fuzzy subgroups of a group G is defined. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group.

In this paper a first step in classifying the fuzzy subgroups structure of a finite symmetric groups $S_{n} \times S_{m}(n=m, n=2 \& m \geq 3)$ is made. An explicit formula for the number of distinct fuzzy subgroups of $S_{n} \times S_{m}$ is indicated. We also count the number of fuzzy subgroups for a particular class of finite symmetric groups. As a guiding principle in determining the number of these classes, note that an essential role in solving our counting problem is played again by the InclusionExclusion Principle. It leads us to some recurrence relations, whose solutions have been easily found.

[^104]
A new smoothing method based on diffusion equation and K-means clustring

Mohamed OUHDA

Moulay Ismail University
Faculty of Sciences and Technology
Department of Computer Science
ASIA Group M2I Laboratory
Errachidia, Morocco
(With M. Ouanan and B. Aksasse)

Abstract

When an image is acquired by a camera or other imaging system, the vision system for which it is intended is often unable to directly use it. The image may be corrupted because of random variations in intensity, variations in illumination, or poor contrast that must be dealt with in the early stages of vision processing. The main goal of this paper is to discuss partial differential equation methods for image enhancement aimed at eliminating these undesirable characteristics. We propose a new filtering method, based on diffusion equation and k-means segmentation. The experimental results show that the proposed method has a better smoothing performance compared with the Perona-Malik method that uses the anisotropic diffusion. In addition, the proposed approach is simple and can provide a better smoothing in a few iterations, which gives, in a short execution time, a better image filtering.

References

[1] P. Perona, and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on pattern analysis and machine intelligence, 1990, vol. 12, no 7, p. 629-639, (1990).
[2] S.K. Jain, and R.K. Ray, An Alternative Framework of Anisotropic Diffusion for Image Denoising, In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies (p. 46). ACM. (2016, March)
[3] J.Bai and X.C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE transactions on image processing, vol. 16, no. 10, p. 2492-2502. (2007).
[4] H.M. Salinas, and D.C. Fernandez, Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography IEEE Transactions on Medical Imaging, vol. 26, no. 6, p. 761-771. (2007)
[5] F. Åström, M. Felsberg, and G. Baravdish, Mapping-Based Image Diffusion, Journal of Mathematical Imaging and Vision, P. 1-31, (2016).
[6] G.H. Cottet, et EL. Mokamed. Nonlinear PDE operators with memory terms for Image Processing, 1996. Proceedings International Conference on. IEEE, p. 481-483, (1996).
[7] C. Zhang, Y. Chen, C. Duanmu, and Y. Yang, Image denoising by using PDE and GCV in tetrolet transform domain, Engineering Applications of Artificial Intelligence, vol. 48, p. 204229, (2016).
[8] J. Weickert, S. Grewenig, C. Schroers and A. Bruhn, Cyclic schemes for PDE-based image analysis, International Journal of Computer, vol. 118, no 3, p. 275-299, (2016).
[9] H. Mostafa, K. Mohammad-Reza, and B. Azizollah. A new adaptive coupled diffusion PDE for MRI Rician noise, Signal, Image and Video Processing, vol. 10, no. 7, p. 1211-1218, (2016).

[^105]
Crypto système à clé publique de McEliece basé sur les produits codes matrices

Mohamed OULD SAID

University Cheikh Anta Diop of Dakar BP 5005 Dakar-Fann Senegal ouldsaid@yahoo.fr

Abstract

RÉSumé. Les applications des produits matrice codes ont également une utilisation pratique en théorie des codes, dans la création des produis matrice codes en cryptosystème PMC est un cryptosystème de McEliece basés sur les produis matrice codes PMC, une famille de codes de distance minimale. Dans cette communication, on essaye d'introduire un crypto système à clef publique utilisant des codes correcteurs d'erreurs (c'est un système deux en un). Le système étudié est le crypto système de McEliece utilisant le produit des codes et des matrices.

Nous allons dans cette communication : faire une cryptographie en proposant une amélioration de l'attaque de décodage, précisément celui du décodage par ensemble d'information sur les codes binaires et ternaires. Finalement on va proposer une application du cryptosystème de Mc.Elièce en proposant une utilisation des : <Matrix-Product Codes».

[^106]On Parry invariant of a quintic cyclic field
Zhour OUMAZOUZ
Department of Mathematics and computer science
Faculty of sciences
Mohammed First University
Oujda, Morocco
oumazouzzhour@gmail.com
(With M. Ayadi)

Abstract

Let us suppose that K / Q is a quintic cyclic field such that the conductor of K is divisible exactly by two primes. The aim of this work is to give a table of Parry invariant of K in the case which $25 \| h_{K}$ where h_{K} is the classes group of K.

References

[1] M. Ayadi, Sur la capitulation des 3-classes d'idéaux d'un corps cubique cyclique, these 1995.
[2] C. Greither and R. Kucera,Annihilators for the class group field of prime power degree, canad J.Math Vol.58(3),2006 pp. 580-599
[3] G. Gras, Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier impair l, Annales de l'institut Fourier, tome 23,n3 (1973), p 29-32.

[^107]
Les groupes de coxeter et le problème de distance d'inversion Slimane OUYAHIA

Faculty of mathematics
University of Sciences and Technology Houari Boumediene

Algiers, Algeria.
sliouyahia@gmail.com

Abstract

RÉsumé. Comme les processus d'inversions ne peuvent pas être observer directement, les modèles mathématiques associés sont nécessaires pour tirer des inférences à partir des données génomiques à propos des processus évolutionnaires. Chaque modèle peut être utiliser aussi pour établir une métrique (distance) associée à l'espace des arrangements génomiques. Alternativement, ces métriques peuvent servir à la reconstruction des arbres phylogéniques (évolution et développement des espèces vivantes). Une approche d'un point de vue algébrique à fin d'en extraire des informations sur ses processus est de modéliser ses phénomènes par des modèles basés sur la théorie des groupes. De cette façon on pourra traduire des questions à propos de la distance d'inversion en des questions concernant les groupes et pour s'y faire on utilisera plus précisément les groupes de Coxeter.

Références

[1] A. Bj" orner and F. Brenti. Combinatorics of Coxeter Groups, volume 231 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2005.
[2] A. Bj"orner, F. Brenti, Ane permutations of type A, Electron. J. Combin. 3 (1996), no. 2, R 18. [242, 293, 294].
[3] A. Berenstein, A. Kirillov, Groups generated by involutions, Gel?fand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra Analiz 7 (1995), no. 1, 92152 ; translation in St. Petersburg Math. J. 7 (1996),77127.
[4] L. Balcza, Sum of lengths of inversions in permutations, Discrete Math. 111 (1993), 4148.
[5] Watterson GA, Ewens WJ, Hall TE, Morgan A (1982) The chromosome inversion problem. J Theoret Biol 99(1):17.
[6] Bader D, Moret B, Yan M (2001) A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J Comput Biol 8(5) :483491.

[^108]
G-ring pairs: a generalization of a Theorem of Dobbs

Omar OUZZAOUIT

Department of Mathematics, Faculty of Sciences Semlalia
Cadi Ayyad University
Marrakech, Morocco
ouzzaouitomar@gmail.com
(With L. Izelgue)

Abstract

A commutative ring R is said to be a G-ring, in the sense of Adams, if $T(R)=R\left[t^{-1}\right]$, for some regular element $t \in R$, where $T(R)$ denotes the total quotient ring of R. We first investigate the transfer of the G-property among pairs of rings sharing an ideal. Then, for $A \subset B$ a couple of rings, we establish necessary and sufficient conditions for (A, B) to be a G-ring pair: that is, each intermediate ring $A \subseteq R \subseteq B$ is a G-ring. In fact, we generalize a Theorem of D. Dobbs, characterizing G-domain pairs, to pairs of rings with zero divisors.

References

[1] J.C. Adams, Rings with a finitely generated total quotient ring, canad. Math. Bull. Vol 17 (1) (1974).
[2] M. D'Anna, M. Fontana, An Amalgamated Duplication of a Ring Along an Ideal: The Basic Properties, J. Algebra Appl. (2007), 433-459.
[3] M. D'Anna, C.A. Finocchiaro, M. Fontana, Properties of Prime Ideals in Amalgamated Algebras Along an Ideal, J. of Pure Appl. Algebra 214 (2010), 1633-1641.
[4] D. Dobbs, G-Domain Pairs, In Trends in Commutative Rings Research, Ayman Badawi, Nova Science Pub. Inc. (2003) 71-75.

[^109]A covering condition for primary spectrum Neslihan Aysen OZKIRISCI
Department of Mathematics, Yildiz Technical University
Istanbul, Turkey
aozk@yildiz.edu.tr
(With Z. KIlic and S. Koc)

Abstract

Let $\operatorname{Prim}(R)$ denote the set of primary ideals of a commutative ring R. The Zariski topology on $\operatorname{Prim}(R)$ is defined to be the topology whose closed sets are of the form $V_{\text {rad }}(I)$, denoting the set of primary ideals of R such that their radicals contain I. This topological space is called primary spectrum of R. In our study we examine the basis and some topological features of this space. In literature, commutative rings with the property that every ideal contained in the union of a family of prime ideals is contained in one of the primes of the family were examined. Analogous with this property, we also investigate under which condition a ring R satisfies the property that if $X_{r} \subseteq \bigcup_{\alpha \in \Lambda} X_{s_{\alpha}}$ where $r, s_{\alpha} \in R$ ($\alpha \in \Lambda$) are nonzero elements of R, then $X_{r} \subseteq X_{s_{\alpha}}$ for some $\alpha \in \Lambda$.

References

[1] C.J. Hwang, G. W.Chang, A Note on coverings of prime ideals, Commun. Korean Math. Soc. 14 (1999), 681-685.
[2] M. Arapovic, On the embedding of a commutative ring into a 0 -dimensional ring, Glas. Mat. 18(1983), 53-59.
[3] J. Brewer, F. Richman, Subrings of 0-dimensional rings, Multiplicative Ideal Theory in Commut. Algebra (2006), 73-88.
[4] M. Satyanarayana, Rings with primary ideals as maximal ideals, Math. Scand. 20 (1967), 52-54.
[5] R. Gilmer, Rings in which the unique primary decomposition theorem holds, Proc. Am. Math. Soc. 14 (1963), 777-781.
[6] A. Pena, L. M. Ruza, J. Vielma, Separation axioms and the prime spectrum of commutative semirings, Notas Mat. 5 (2009), 66-82.

[^110]
Commutator having idempotent values with automorphism in semiprime rings

Sajad Ahmad PARY
Department of Mathematics
Aligarh Muslim University
Aligarh -202002, India
paryamu@gmail.com

Abstract

In the present paper it is shown that a semiprime ring R with characteristics different from 2 and 3 contains a nonzero central ideal of R, if R admits an automorphism σ such that $\left[x^{\sigma}, y\right]^{m}=\left[x^{\sigma}, y\right]$ for all $x, y \in R$, where $m>1$ is a fixed positive integer. We also discuss the case when R is a prime and L in a noncentral Lie ideal of R. This result is in the spirit of the Herstein's theorem (commutator having idempotent values on rings).

References

[1] Beidar, K. I. and Bres̆ar, M., Extended Jacobson density theorem for rings with automorphisms and derivations, Israel J. Math. 122(2001), 317-346.
[2] Beidar, K. I., Martindale III, W. S., Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996.
[3] Carini, L. and De Filliippis, V., Commutators with power central values on a Lie ideals, Pacific J. Math., 193 (2000), 269-278.
[4] Chuang, C. L., Differential identities with automorphism and anti-automorphism-I, J. Algebra 149 (1992), 371-404.
[5] Chuang, C. L., Differential identities with automorphism and anti-automorphism-II, J. Algebra 160(1993), 291-335.
[6] Erickson, T. S., Martindale III, W., Osborn J. M., Prime nonassociative algebras, Pacific. J. Math., 60 (1975), 49-63.
[7] Herstein, I. N., A condition for the commutativity of the rings, Canad. J. Math., 9 (1957), 583-586.
[8] Kharchenko, V. K., Generalized identities with automorphisms, Algebra i Logika, 14 (2) (1975), 215-237.
[9] Lanski, C., An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731-734.
[10] Liau, P. K. and Liu, C. K., On automorphisms and commutativity in semiprime rings, Canad. Math. Bull. 56(3) (2013), 584-592.
[11] Martindale III, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[12] Mayne, J. H., Centralizing automorphisms of prime rings, Canad. Math. Bull., 19 (1976), 113-115.
[13] Mayne, J. H., Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull., 35 (1992), 510-514.

[^111]
On (Cofinitely) weak rad- \bigoplus-supplemented modules

Manoj KUMAR PATEL
Department of Mathematics
NIT Nagaland
India -797103
mkpitb@gmail.com

Abstract

This paper deals the property of weak Rad- \oplus-supplemented module. The class of weak Rad- \oplus-supplemented module lies between the class of Rad- \oplus-supplemented and Rad-supplemented modules. Moreover we study the properties of weak Rad- \oplus-supplemented and cofinitely weak Rad- \oplus -supplemented modules over some special kind of rings.

References

[1] E. Buyukasik and C. Lomp, On a recent generalization of semiperfect rings, Bull. Aus. Math. Soc., 78(2008), 317-325.
[2] Y. Talebi and A. Mahmoudi, On Rad- $\oplus-$ supplemented modules, Thai Journal of Mathematics, 9(2), (2011), 373-381.
[3] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., Lifting Modules. Supplements and projectivity in module theory, Frontiers in Math. Boston:Birkhauser, (2006).

[^112]
An ultrametric space of valuation domains of the field of rational functions

Giulio PERUGINELLI
Department of Mathematics
University of Padova
Italy
perugine@mail.dm.unipi.it

Abstract

Let V be a valuation domain of rank one and quotient field K. In this talk we study a class of valuation domains of the field of rational functions $K(X)$ which lie over V and are indexed by the elements of $\overline{\widehat{K}}$, the algebraic closure of the v-adic completion \widehat{K} of K. More precisely, let $\widehat{\widehat{V}}$ be the integral closure of the completion \widehat{V} of V in $\overline{\widehat{K}}$; then, given $\alpha \in \overline{\widehat{K}}$, the valuation domains we are interested in are of the form $W_{\alpha}=\{\varphi \in K(X) \mid \varphi(\alpha) \in \overline{\widehat{V}}\}$. We give a necessary and sufficient condition for a valuation domain of $K(X)$ to be of this form in the case when V is a discrete (DVR). Finally, we show that the space $\left\{W_{\alpha} \mid \alpha \in \overline{\widehat{K}}\right\}$ endowed with the Zariski topology is homeomorphic to the set of irreducible polynomials over \widehat{K} endowed with an ultrametric distance introduced by Krasner. Among other things, we will show how these valuation domains are important in the study of rings of integer-valued polynomials.

[^113]
Some conditions under which near-rings are rings

Abderrahmane RAJI
Faculty of Sciences and Technology
Errachidia, Morocco
rajiabd2@gmail.com
(With L. Oukhtite)

Abstract

In the present paper, we investigate the notion of generalized semiderivation satisfying certain algebraic identities in 3 -prime near-ring N which forces N to be a commutative ring. Moreover, an example proving the necessity of the primeness of N is given.

References

[1] H. E. Bell and G. Mason, On derivations in near-rings, North-Holand Mathematics Studies, 137 (1987), 31-35.
[2] N. Argac, On near-rings with two-sided α-derivations, Turk. J. Math, 28 (2004), 195-204.
[3] H. E. Bell, A. Boua, and L. Oukhtite, Semigroup ideals and commutativity in 3-prime near rings, Comm. in Alg., 43 (2015), 1757-1770.
[4] A. Boua and L. Oukhtite, Derivations on prime near-rings, Int. J. Open Probl. Comput. Sci. Math. 4 (2011), no.2, 162-167.
[5] A. Boua, L. Oukhtite, and H. E. Bell, Differential identities on semigroup ideals of right nearrings, Asian-European J. Math. 06, 1350050 (2013) (8 pages).
[6] M. Ashraf and A. Shakir, On (σ, τ)-derivations of prime near-rings-II, Sarajevo J. Math. 4 (2008), no. 16, 23-30.
[7] H. E. Bell, On derivations in near-rings II, Kluwer Academic Publishers Netherlands (1997), 191-197.
[8] A. Boua, Some conditions under which prime near-rings are commutative rings, Int. J. Open Probl. Comput. Sci. Math., 5 (2012), no.2, 7-15.

[^114]
Perinormal rings with zero-divisors

Anam RANI
Abdus Salam School of Mathematical Sciences
GC University, Lahore
68-B, New Muslim Town
Lahore 54600, Pakistan
anamrane@gmail.com.

Abstract

In their recent papers J. Algebra 451 (2016) and arXiv:1511.06473v2, [math.AC], 29 Apr 2016, N. Epstein and J. Shapiro introduced and studied the perinormal domains: those domains A whose overrings satisfying going down over A are flat A-modules. We study the perinormal concept in the setup of rings with zero-divisors. We extend several results from perinormal domains case, for instance we prove that a Krull ring is perinormal. (Joint work with Tiberiu Dumitrescu.)

[^115]
Identities with additive mappings in rings
 Nadeem UR REHMAN
 Department of Mathematics, Faculty of Sciences Taibah University, Al-Madinah, K.S.A. nu.rehman.mm@amu.ac.in

Abstract

Let R will be an associative ring, $Z(R)$ the center of R, Q its Martindale quotient ring and U its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R. For $x, y \in R$ and we set $[x, y]_{0}=x$, $[x, y]_{1}=x y-y x$ and inductively $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. The ring R is said to satisfy an Engel condition if there exists a positive integer k such that $[x, y]_{k}=0$ for all $x, y \in R$. Notice that an Engel condition is a polynomial $[x, y]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y^{i} x y^{k-i}$ in non-commutative indeterminates x, y. Recall that a ring R is prime if $x R y=\{0\}$ implies either $x=0$ or $y=0$, and R is semiprime if $x R x=\{0\}$ implies $x=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+y d(x)$ holds for all $x, y \in R$. In particular d is an inner derivation induced by an element $q \in R$, if $d(x)=[q, x]$ holds for all $x \in R$. By a generalized inner derivation on R, one usually means an additive mapping $F: R \rightarrow R$ if $F(x)=a x+x b$ for fixed $a, b \in R$. For a such a mapping F, it is easy to see that $F(x y)=F(x) y+x[y, b]=F(x) y+x I_{b}(y)$. This observation leads to the following definition : an additive mapping $F: R \rightarrow R$ is called generalized derivation associated with a derivation d if $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. In the present talk, we investigate the commutativity of R satisfying certain properties on some appropriate subset of R. We also examine the case where R is a semiprime ring.

[^116]
Sur la structure du groupe $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ pour certains corps quadratiques réels \mathbb{k}

Mohammed REZZOUGUI
University of Mohammed First, Faculty of Sciences
Oujda, Morocco
morez2100@hotmail.fr
(With A. Azizi, M. Taous and A. Zekhnini)

RÉsumé. Soient $p_{1} \equiv p_{2} \equiv-q \equiv 1(\bmod 4)$ des nombres premiers. Posons $\mathbb{k}=$ $\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}\right)$, et désignons par $\mathrm{C}_{\mathrm{k}, 2}$ son 2-groupe de classes et par $\mathrm{k}_{2}^{(2)}$ son deuxième 2-corps de classes de Hilbert. Dans ce papier, on s'intéresse à déterminer le type de $\mathrm{C}_{\mathfrak{k}, 2}$ et la structure du groupe $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ en utilisant la capitulation des 2 -classes de \mathbb{k} dans ses extensions quadratiques non-ramifiées.

RÉférences

[1] A. Azizi et A. Mouhib, Sur le rang du 2-groupe de classes de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ où $m=2$ ou un premier $p \equiv 1 \bmod 4$. Trans. Amer. Math. Soc. 353, No 7 (2001), 2741-2752
[2] A. Azizi et A. Mouhib, Capitulation des 2-classes d'idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classes de Hilbert. Pacific Journal of Mathematics Vol. 218, No 1 (2005), 17-36
[3] A. Azizi, M. Taous and A. Zekhnini, On the 2-groups whose abelianizations are of type $(2,4)$ and applications, Publ. Math. Debrecen 88/1-2, (2016), 93-117.
[4] A. Azizi, A. Zekhnini and M. Taous, Capitulation in the absolutely abelian extensions of some fields I, arxiv.org/abs/1507.00295.
[5] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower. J. Number Theory 73 (1998), 182-194
[6] E. Benjamin and C. Snyder, Number Fields with 2-class Number Isomorphic to ($2,2^{m}$), preprint, 1994.
[7] C. Chevally, Sur la théorie du corps de classes dans les corps finis et les corps locaux. Arch. Math (1934),365-476.
[8] F. P. Heider and B. Schmithals, Zur kapitulation der idealklassen in unverzweigten primzyklischen erweiterungen, J. Reine Angew. Math. 366 (1982), 1-25, Zbl 0505.12016, MR 0671319.
[9] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. reine angew. Math. 283/284 (1976) 313-363.
[10] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 171 (1935) 55-60.
[11] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Univ. Tokyo Sect. I 13 (1966), 201-209, Zbl 0158.30103, MR 0214565.

[^117]
Biordered sets from involution rings and projection lattice
 Parackal ROMEO

Dept. of Mathematics
Cochin University of Science and Technology, Kochi
Kerala, India
romeo_parackal@yahoo.com

Abstract

In [5] K.S.S. Nambooripad introduced the concept of a biordered set as a partial algebra $\left(E, \omega^{r}, \omega^{l}\right)$ where ω^{r} and ω^{l} are two quasiorders on E satisfying certain axioms to study the structure of a regular semigroup. Later on it is also shown that every biordered set arises as the set idempotents of some semigroup thus biordered set turns out to be a majore tool in the study of semigroups. It is also well known that when commutes the orders ω^{r} and ω^{l}) coinsides and the biorded set reduces to a partially ordered set. In this paper we extend the biordered set approch to the study of the structure of a ring, by describing the biordered sets (both addictive and multiplicative) arising from the ring. Further it is shown that in cerain rings with involution, when idempotents commutes the projections form a complemented distributive lattice.

References

[1] A. H. Clifford and G. B. Preston (1964) : The Algebraic Theory of Semigroups, Volume 1 Math. Surveys of the American. Math. Soc.7, Providence, R. I.
[2] David Easdown (1985): Biordered sets comes from Semigroups : Journal of Algebra, 96, 581591, 87d:06020.
[3] David Easdown (2006): Biordered sets of rings, Monash Conference on Semigroup Theory (Melbourne, 1990), 43-49, World Sci. Publ., River Edge, NJ, MR1232671
[4] John von Neumann(1960): Continuous Geometry, Princeton University Press, Princeton, New Jersey, ISBN-13:987-069105893
[5] K.S.S. Nambooripad (December 1979): Structure of Regular Semigroups (MEMOIRS, No.224), American Mathematical Society, ISBN-13: 978-0821 82224
[6] Ryszard Mazurek (2011): On semigroups admitting ring structure, Semigroup Forum, 83: 335-342.

[^118]
Maximal codes

Mohammed SABIRI

Faculty of Sciences and Technology
Errachidia, Morocco
moh_sabiri@yahoo.fr

Abstract

The theory of coding is the study of methods allowing the transfer Information effectively. But for the retrieval of information always, one seeks to minimize time by the use of algorithms whose goal is to reduce the exhaustive search. In this work we try to introduce the concept of Maximal codes that are built over rings, more precisely we will give Maximal codes for special rings, Namely that the notion of maximal codes has been used by Chritophe Chapote, these maximal codes are constructed over finite fields, and these codes are used for coding and decoding by minimizing the time.

References

[1] Christophe Chapote, Reconnaissance de codes, structure des codes quasi-cycliques, Le 24 septembre 2009.
[2] F. J. Mac Williams and N. J. A. Sloane, The theory of error-corecting codes, Third printing North-Holland Mathematics library (1981), Volume 16.
[3] Parmod Kanwar and Sergio R. Lòpez-Permouth, Cyclic codes over the integrs modulo p^{m}, Finite fields and their applications, Vol. 3, pp. 334-352 (1997)
[4] Master de sciences, mention mathématiques, Introduction à la théorie des représentations, Université Louis Pasteur Strasbourg-Année 2008-2009

[^119]On monigenity of cubic cyclic extension
Mohammed SAHMOUDI
Regional Centre of Trades Education and Training Fez, Morocco
mohamed-sahmoudi@usmba.ac.ma
(With M. Zeriouh)

Abstract

In this paper, with a given integral basis of O_{K} : the integral closure of unramified cyclic cubic number field $K=\mathbb{Q}(\beta)$, we explicit When O_{K} is monogenic. As a consequence of this theoretical result the index $I_{O_{K}}(\beta)$ of K has straightforwardly computed. Furthermore we test if β is a generator of normal integral basis of K.

References

[1] M. E. Charkani and M. Sahmoudi, Sextic Extension with cubic subfield, JP Journal of Algebra, Number Theory et Applications, vol.34,no.2, 139-150, (2014).
[2] H. Cohen, A Course in Computational Algebraic Number theory, GTM vol. 138, Springer Verlag, Berlin, (1996).
[3] A. Fröhlich and M. J. Taylor, Algebraic number theory, CambridgeStudies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, (1993).
[4] I. Gaàl, P. Olajos, M. Pohst, Power Integral Bases in Orders of Composite Fields, Experimental Mathematics, Vol. 11, no. 1, (2002).

[^120]
Generalized $\left(\in, \in \vee q_{k}\right)$-Fuzzy subsemigroups and ideals in semigroups

Saleem ABDULLAH

Department of Mathematics
Abdul Wali Khan University, Mardan, KP
Pakistan
saleemabdullah81@yahoo.com

Abstract

The main motivation of this article is to generalized the concept of fuzzy ideals, (α, β)-fuzzy ideals, $\left(\in, \in \vee q_{k}\right)$-fuzzy ideals of semigroups. By using the concept of q_{K}^{δ}-quasi-coincident of a fuzzy point with a fuzzy set, we introduce the notions of $\left(\epsilon, \in \vee q_{k}^{\delta}\right)$-fuzzy left ideal, $\left(\in, \in \vee q_{k}^{\delta}\right)$-fuzzy right ideal of a semigroup. Special sets, so called Q_{k}^{δ}-set and $\left[\lambda_{k}^{\delta}\right]_{t}$-set, condition for the Q_{k}^{δ}-set and $\left[\lambda_{k}^{\delta}\right]_{t}$-set to be left (resp. right) ideals are considered. We finally characterize different classes of semigroups (regular, left weakly regular, right weakly regular) in term of $\left(\epsilon, \in \vee q_{k}^{\delta}\right)$-fuzzy left ideal, $\left(\epsilon, \in \vee q_{k}^{\delta}\right)$-fuzzy right ideal and $\left(\epsilon, \in \vee q_{k}^{\delta}\right)$ fuzzy ideal of semigroup S.

[^121]
Some properties of \star-prime rings

Salah SALHI

Regional Centre of Trades Education and Training
Rabat, Morocco
salhisalh@gmail.com

Abstract

The main purpose of this work is to provide some properies of \star-prime rings with involution \star. First, we study the relationship between the primeness and the \star-primeness of rings. Afterwards, we investigate the semipriminess of a \star-prime rings. At the end, we characterize the left centralizers in \star-prime rings.

References

[1] N. Jacobson, Structure of rings, Amer.Math. Soc.Providence RI, (1964).
[2] J.Vukman, I. Kosi-Ulbl, On centralizer of semiprime rings with involution, StudiaSci. Math. Hungar. 43(1)(2006) 61-67.
[3] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with generalized identities, Maecel Dekker, Inc. New York. Basel. Hong Kong, (1996).
[4] Willard E. Baxter, Wallace S. Martindale, The extented centroid in \star-prime rings, Communication in Algebra, 10(8), 847-874(1982).
[5] I.N. Herstein, Ring with involution, University of Chicago Press, Chicago (1976).

[^122]
Construction of a strongly co-hopfian abelian which the tosion part isn't strongly co-hopfian

Abdelalim SEDDIK
Laboratory of Topology Algebra, Geometry and Discrete Mathematics. Department of Mathematical and Computer Sciences,
Faculty of Sciences Ain Choc, Hassan II University, Casablanca, Morocco seddikabd@hotmail.com

Abstract

An abelian group A is called strongly co-hopfian if for every endomorphism α of A the chain $\operatorname{Im}(\alpha) \supseteq \operatorname{Im}\left(\alpha^{2}\right) \supseteq \operatorname{Im}\left(\alpha^{3}\right) \supseteq \operatorname{Im}\left(\alpha^{4}\right) \supseteq \cdots$ is stationary. In this work we characterize some properties of the strongly co-hopfian abelian group. Then we show that the p-component of strongly co-hopfian abelian group is also strongly co-hopfian but for the torsion part we construct strongly co-hopfian abelian group whose the torsion part is not strongly co-hopfian.

References

[1] S.Abdelalim Characterization The strongly Hopfian abelian groups in the Category of Abelian torsion Groups Journal of Mathematical analysis Volume 6 ISSUE 4(2015), PAGES 1-10.
[2] Seddik. Abdelalim, Abdelhakim. Chillali and Hassane. Essannouni The strongly Hopfian abelian groups. Gulf Journal of Mathematics Vol 3, Issue 2 (2015) 61-65
[3] S. Abdelalim et H. Essannouni, Characterization of the automorphisms of an Abelian group having the extension property. Vol. 59, Portugaliae Mathematica. Nova Série 59.3 (2002): 325333.
[4] S. Abdelalim and H. Essannouni, Characterization of the Inessential Endomorphisms in the Category of Abelian Groups. Pub. Mat. 47 (2003) 359-372. 659-672
[5] G. Baumslag, Hopficity and abelian groups, Topics in Abelian groups. Ed.by J.Jrwin and E. A. Walker, scott foresman and company,1963,331-335.
[6] R.A. Beaumont, Groups with isomorphic proper subgroups. Bull Amer. Math. Soc,51(1945)381387.
[7] R. Bear Groups without proper Isomorphic Quotient groups. Bull Amer. Math. Soc,50 (1944) 267-278.
[8] P. Crawley, An Infinite Primary Abelian Groups Without Proper Isomorphic Subgroups. Bull. Amer. Math Soc. 68 (1962) 462-467.
[9] L. Fuchs, Infinite Abelian Groups, vol. 1,2 Academic press New York, 1970.
[10] B. Goldsmith and K. Gong, A Note On Hopfian and Co-Hophian abelian group, Dublin Institute of technology School of Mathematics 2012.(http://arrow.dit.ie/scschmatcon)
[11] A. Haghany and M.R. Vedadi, Generalized Hopfian Mdules, Journal of Algebra (2002), p 324341.
[12] V.A Hiremath, Hopfian Rings and Hopfian Modules, Indian J. pure appl. Math. 17(7),(1986) 895-900
[13] A. Hmaimou, A. Kaidi and E. Sanchez Campos, Generalized Fitting modules and rings, Journal of Algebra 308 (1) (2007), 199-214.
[14] A. kaidi et M. Sangharé,Une caractérisation des anneaux artiniens à idéaux principaux, Lecture notes in Mathématique 1328 (1988) 245-254.
[15] K. Varadarajan, Hopfien and co-hopfian objects, Pul. Mat. 36 (1992), 293-317.
[16] M.X Wei, Hopfien modules and co-Hopfian modules, Comm. Algebra, 1995.

[^123]
Anneaux pour lesqeules la réciproque du Lemme de Schur est vérifiée

Azeddine SENDANI
Departement de Mathematics, Faculty of Sciences
University Chouaib Doukkali
El Jadida, Morocco
azeddine20@yahoo.fr
(With M. Alaoui and A. Haily)

Abstract

Résumé. Si M est un module simple d'un anneau R alors $\operatorname{End}_{R}(M)$ est un anneau à division (Lemme de Schur). La réciproque de ce résultat que nous appelons la propriété CSL n'est pas toujours vraie. Notre objet est de communiquer cette réciproque pour quelques classes d'anneaux : anneaux noetheriens à gauche, anneaux réguliers au sens de von Neumann (VNR) et anneaux parfaits. D'abord, nous établissons qu'un anneau noetherien à gauche R est un CSL-anneau si et seulement si R est un anneau artinian à gauche et primairement décomposable. Ensuite, nous montrons qu'un anneau (VNR) dont tous les quotients primitifs sont artiniens est un CSL-anneau. En particulier, tout anneau régulier à identité polynômiale vérifie la propriété CSL. Enfin, la propriété CSL pour un anneau parfait, nous montrons que R est un CSL-anneau si et seulement si R est un produit d'anneaux primaires.

Références

[1] M. Alaoui, A. Haily, The converse of Schur's lemma in noetherian rings and group algebras. Communications in Algebra. 33 (2005),2019-2114.
[2] A. Haily, M. Alaoui, Perfect rings for wich the converse of Schur's lemma holds. Publ. Mat. 45 (2001),219-222.
[3] Y. Hirano, J.K. Park, Rings for which the converse of Schur's lemma holds. Math. J. Okayama Univ. 33(1991), 121-131.
[4] T. Y. Lam. A First Course in Noncommutative Rings. Graduate Texts in Math. 131. Berlin-Heidelberg-New York: Springer-Verlag.

[^124]
Generating elliptic curves for cryptography
 Taoufik SERRAJ

ACSA Laboratory
Faculty of Sciences
Mohammed First University
Oujda, Morocco
taoufik.serraj@gmail.com
(With M. C. Ismaili and A. Azizi)

Abstract

Elliptic curve cryptography (ECC) [1, 2] is a very efficient technology for implementing public key cryptosystems and public key infrastructures (PKI), it offers encryption/decryption, digital signature, and key exchange solutions. During the last decade, many elliptic curve standards were proposed [3, 4]. However, these curves do not satisfy all the security and the efficiency requirements. In fact, securing cryptographic protocols while preserving efficiency is a big challenge for cryptographers in practice. In this paper, we discuss the compatibility of cryptographic requirements and how can we generate new families of elliptic curves overs finite fields for cryptographic applications using SAGE [5] or PARI/GP [6] systems.

References

[1] N. Koblitz, Elliptic curve cryptosystems. J. Mathematics of computation, 48(177) (1987), 203-209.
[2] V. S. Miller, Use of elliptic curves in cryptography, In Conference on the Theory and Application of Cryptographic Techniques, Springer Berlin Heidelberg (1985), 417-426.
[3] Certicom Research, Recommended Elliptic Curve Domain Parameters, Standards for Efficient Cryptography (SEC) 2, (2000).
[4] ANSSI, Publication d'un paramétrage de courbe elliptique visant des applications de passeport électronique et de l'administration électronique française, Tech. Rep., (2011).
[5] SageMath.: SAGE version 7.5.1, (2017).
[6] PARI Group.: PARI/GP version 2.9.1, Bordeaux, (2016).

[^125]
Epimorphisms and dominions

Aftab Huaasin SHAH
Department of Mathematics
Central University of Kashmir
Srinagar
aftabshahcuk@gmail.com

Abstract

Let ϱ be a category. A morphism α of C is an epimorphism if whenever β and γ are morphisms of ϱ such that $\alpha \beta=\alpha \gamma$, then $\beta=\gamma$. In a concrete category ϱ. It is obvious that any surjective morphism is epimorphism but the converse need not be true in general. In the category of semigroups epimorphisms are not necessarily onto, for example the inclusion $i:(0,1) \rightarrow(0, \infty)$ regarding both the intervals as multiplicative semigroups is an epimorphism.

Let U be a subsemigroup of a semigroup S. we say that U dominates d of S if whenever $\alpha, \beta: S \rightarrow T$ are morphisims such that $u \alpha=u \beta$ for all $u \in U$, then $d \alpha=d \beta$. The set of all elements of S dominated by U is called the Dominion of U in S and is denoted by $\operatorname{Dom}(\mathrm{U}, \mathrm{S})$ which is a subsemigroup of S containing U . The concepts of epimorphisms and dominions are closely related as $\alpha: S \rightarrow T$ is epimorphism if and only if the inclusion $i: s^{\alpha} \rightarrow T$ is epi and the inclusion $i: s^{\alpha} \rightarrow T$ is epi iff and only if $\operatorname{Dom}(S \alpha, T)=T$. Suppose a semigroup S satisfies an identity I, it is natural too also does I be satisfied by the epimorphic image of S. In the present talk we shall be satisfied by the epimorphic image of S. In the present talk we shall try to answer this question.

[^126]
Left generalized multiplicative derivations and commutativity of 3 -prime near-rings

Mohammad Aslam SIDDEEQUE

Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India aslamsiddeeque@gmail.com
(With M. Ashraf)

Abstract

Let \mathcal{N} be a left near-ring. A map $d: \mathcal{N} \rightarrow \mathcal{N}$ is called a multiplicative derivation of \mathcal{N} if $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathcal{N}$. A map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a right generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that $f(x y)=x d(y)+f(x) y$ for all $x, y \in \mathcal{N}$. Here we say that f is a right generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Similarly a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ is called a left generalized multiplicative derivation of \mathcal{N} if there exists a multiplicative derivation d of \mathcal{N} such that $f(x y)=x f(y)+d(x) y$ for all $x, y \in \mathcal{N}$. The map f will be called a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Finally, a map $f: \mathcal{N} \longrightarrow \mathcal{N}$ will be called a generalized multiplicative derivation of \mathcal{N} if it is both a right as well as a left generalized multiplicative derivation of \mathcal{N} with associated multiplicative derivation d of \mathcal{N}. Note that if in the above definition both d and f are assumed to be additive mappings, then f is said to be a generalized derivation with associated derivation d of \mathcal{N}. In the present paper, we investigate the commutativity of 3 -prime near-ring \mathcal{N} satisfying certain conditions and identities involving left generalized multiplicative derivations on semigroup ideals. Moreover, examples justifying the necessity of 3 -primeness condition in all the results are provided. We have also constructed examples to justify the fact that the results proved here are not true for right generalized multiplicative derivations.

On n-absorbing ideals of power series rings

Sihem SMACH

Faculty of sciences of Monastir
Tunisia.
Smach_ sihem@yahoo.com.

Abstract

Let R be a commutative ring with $1 \neq 0$ and n a positive integer. The concept of 2 -absorbing ideals was introduced by A. Badawi, in [2], as a generalization of prime ideals, and some propreties of 2-absorbing ideals were studied. Precisely, a proper ideal I of R is said to be 2-absorbing if $a b c \in I$ for $a, b, c \in R$ implies that $a b \in I$ or $a c \in I$ or $b c \in I$. Later, in 2011, D. D Anderson and A. Badawi generalized the concept of 2absorbing ideals to n-absorbing ideals [1]. According to their definition, a proper ideal I of R is called an n-absorbing ideal if whenever $a_{1} \ldots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in$ R, then there are n of the a_{i} 's whose product is in I. In this talk, we study Anderson-Badawi conjectures, the stability of 2-absorbing ideals in the power series rings and we give some basic properties of n-absorbing ideals in U-rings.

References

[1] D.F. Anderson, A. Badawi. On n-absorbing ideals of commutative rings. Commun. Algebra. 39 (5) (2011) 1646 - 1672.
[2] A. Badawi. On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (3) (2007) 417-429.
[3] S. Hizem, A. Benhissi. Nonnil-Noetherian rings and the SFT property. Rocky Mt. J. Math. 41 (5) (2011) $1483-1500$.
[4] H. Tsang. Gauss's Lemma. Ph.D. Thesis. University of Chicago (1965).
[5] A. Yousfian Darani, E.R. Puczylouski, On 2-absorbing commutative semigroup and their applications to rings. Semigroup Forum. 86 (1) (2013) $83-91$.

[^127]
Tower formula of discriminant

Abderazak SOULLAMI

Faculty of Sciences
Fez, Morocco
abderazak.soullami@usmba.ac.ma
(With M. E. Charkani)

Abstract

Let R be a commutative ring. Let A be a free R-algebra of finite rank and M a free A-module of finite rank. In this work we establish an intereseting tower formula of discriminant of M. More precisely we prove that the discriminant of the bilinear module M over R is the product of the norm of discirminant of bilinear module M over A and some power of the classical disciminant of the R-algebra A. As an application we compute the discriminant of the algebra associated to a B-J polynomial, and some graded fields.

References

[1] N. Bourbaki, Algèbre, Chapitres 4 à 7, Masson ,(1981).
[2] M. E. Charkani, Sur certains applications du discriminant relatif, to appear
[3] A. H. Durfee, Bilinear and Quadratic Forms on Torsion Modules , Advences in MatheMATICS 25, 133-164, (1977).
[4] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Combridge Studies in Advenced Mathematics 27, (1993).
[5] J. Milnor, D. Husemoller, Symmetric Bilinear Forms, Springer Verlag Berlin HeiDELBERG, (1973).
[6] J. Neukirch Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, Vol. 322, Springer-Verlag Berlin Heidelberg 1999.
[7] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen WisSenschaften, vol. 270, Springer-Verlag, Berlin, (1985).
[8] G. Shimura, Arithmetic of quadratic forms, Springer Monographs in Mathematics, Springer-Verlag New York, (2010).

[^128]The International Conference on Algebra and its Applications 26-28 April 2017, Errachidia, Morocco

Monotonicity of finite Dirichlet's L function
Salam SUTRISNO
Airlangga University.
Surabaya, Indonesia
Salamsutrisno7@gmail.com

Abstract. Dirichlet's L Function wit nontrivial primitive charater have region non zero. Finite Dirichlet's L function continuous and differentiable. This paper aim to show monotonicity Dirichlet's L Function by Logarithmically complete monotonicity.

Diophantine equations associated Fibonacci numbers

László SZALAY
Department of Mathematics and Informatics
J. Selye University

Komarno, Slovakia
mailto:szalayl@ujs.sk

Abstract. Let $\left\{F_{n}\right\}$ denote the sequence of Fibonacci numbers defined by $F_{0}=$ $0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.

There exist no end of results linked different relations among Fibonacci numbers. Now assume that p and q are positive integers. The present talk studies the equations

$$
F_{1}^{p}+2 F_{2}^{p}+\cdots+k F_{k}^{p}=F_{n}^{q}
$$

in the positive integer unknowns k and n.
The conjecture is that the nontrivial solutions are only

$$
\begin{aligned}
F_{8} & =21=F_{1}+2 F_{2}+3 F_{3}+4 F_{4}, \\
F_{4}^{2} & =9=F_{1}+2 F_{2}+3 F_{3}, \\
F_{4}^{3} & =27=F_{1}^{3}+2 F_{2}^{3}+3 F_{3}^{3} .
\end{aligned}
$$

We solve completely the cases $p=q \in\{1,2\}$.

[^129]
Le Théorème de Batman sur la function PHI d'Euler

Nabil TAHMI

ENS-Laghouat
Algérie
tnabil26@gmail.com
(With A. Derbal)

RÉSumé. Soit φ la fonction arithmétique d'Euler définie par $\varphi(n)=\sum_{1 \leqslant m \leqslant n,(m, n)=1} 1$, avec m et n des entiers naturels, on désigne par $\phi(x)$ le nombre des entiers naturels n tel que $\phi(n) \leq x$, c'est-à-dire

$$
\phi(x)=\sum_{\varphi(n) \leq x} 1
$$

Il est connu [Erdös] que $\phi(x) \simeq A x,(x \longrightarrow+\infty)$, où A une constante effective tel que

$$
A=\frac{\zeta(2) \zeta(3)}{\zeta(6)} \sim 1,9435964 \ldots
$$

Le premier qui a étudié le reste $R(x)=\phi(x)-A x$ c'est P . Bateman en 1972, le résultat obtenu est le suivant : Pour $x>\exp \left(10^{4}\right)$ et $0<\theta<1$, on a

$$
\phi(x)=A x+O\left(x \exp \left(\frac{-\theta}{\sqrt{2}} \sqrt{(\ln x)(\ln \ln x)}\right)\right.
$$

La démonstration de ce resultat est basée sur l'intégration sur un contour du plan complexe à l'aide du théorème des résidus, en utilisant la formule de Perron . En 1992, Smati a exploré les possibilités offertes par une méttode élémentaire et obtenait la première estimation effective de $R(x)$, pour $x \geq 3$ $|R(x)| \leq 1,4 x(\ln x)(\ln \ln x) \times$

$$
\exp \left\{-\left(1-\frac{\ln (\ln (\ln x))+4-\ln 2}{\ln \ln x}\right) \sqrt{(1 / 2)(\ln x)(\ln \ln x)}\right\}
$$

La dernière estimation effective du reste $R(x)$ est obtenue en 2009 par A.Derbal, pour $x \geq 240$

$$
|R(x)| \leq 58,61 x \exp (-(\sqrt{2} / 8) \sqrt{(\ln x)(\ln \ln x)})
$$

Dans un travail future, on compte d'améliorer la constante de cette dernière majoration.

RÉFÉRENCES

[1] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des nombres, Unité associée au CNRS URA 750 Analyse Globale.
[2] T.M.Apostol , Introduction to Analytic Number Theory. New York : Springer-Verlag,1976.
[3] A. Smati , Répartition des valeurs de la fonction d'Euler. Enseign. Maths. 35 (1989), 61-76.
[4] A. Derbal, une forme effective d'un théorème de Bateman sur la fonction PHI d'Euler, INTEGERS 9 (2009) ; 735-744.

[^130]
Sur le deuxième l-groupe de classes de certains corps de nombres de type (l, l) et applications

Mohamed TALBI
Regional Center of Education and Training
Oujda, Morocco
ksirat1971@gmail.com
(With A. Derhem and M. Talbi)

Abstract

Résumé. Soient l un nombre premier, F un corps de nombres et k une extension de F de degré l. On suppose que le l - groupe de classes de $F, \mathrm{Cl}_{l}(F)$, est trivial et que le conducteur de $k \mid F$ est divisible exactement par deux premiers Π_{1} et Π_{2}. Alors la structure du groupe Gal $\left(\left(k^{*}\right)^{(1)} \mid F\right)$, où $k^{*}=(k \mid F)^{*}$ est le corps de genre relatif de l'extension $k \mid F$, est complètement déterminé, une telle structure est liée à la principalisation des premiers Π_{1} et Π_{2}. Si de plus le l-rang du groupe de classes de k^{*} est inférieur à 2 , alors le deuxième l-groupe de classes est déterminé.

Références

[1] A. Azizi, M. Talbi, Mm. Talbi, A. Derhem, D. C. Mayer, The group $\operatorname{Gal}\left(k_{3}^{(2)} \mid k\right)$ for $k=$ $\mathbb{Q}(\sqrt{-3}, \sqrt{d})$ of type $(3,3)$, Int. J. Number Theory, Vol. 12, No. O7, 1951-1986, (2016), DOI 10.1142/S1793042116501207.
[2] A. Azizi, M. Ayadi, M.C.Ismaili et M.Talbi, Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de $\mathbb{Q}(\sqrt{d}, \sqrt{-3})$, Ann. Math. Blaise Pascal 16 (2009), no.1, 71-82.
[3] M.Ayadi, Capitulation des 3-classes d'idéaux de corps cubiques cycliques, Thèse de doctorat, (1992),U.Laval, Québec.
[4] T. Bembom, The capitulation problem in class field theory (Dissertation, Georg-AugustUniversität Göttingen, 2012).
[5] H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a library of groups of small order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
[6] M. Daberkow and M. Posht, On the computation of Hilbert class fields, Int. J. Number Theory. Volume69, (1998) 213-230.
[7] A. Derhem, M. Talbi and MM.Talbi, On some metabelian 3-groups realizable and Applications, Gulf Journal of Mathematics. Volume4, Issue 4, (2016) 155-165.
[8] A. Derhem, M. Talbi and MM.Talbi, On some metabelian 3-groups and Applications I, Gulf Journal of Mathematics. Volume4, Issue 4, (2016) 171-181.
[9] G. Gras, Extensions abéliennes non ramifiées de degré premier d'un corps quadratique, Bull. Soc.Math. France 100 (1972), 177-193.
[10] M.C Ismaili, Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur, Thèse de doctorat, (1992), U.Laval, Québec.
[11] R. James, The groups of order p^{6} (p an odd prime), Math. Comp. 34 (1980), no. 150, 613-637.
[12] T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers, Nagoya Math. J. 6 (1953), 119-127.
[13] F. Lemmermeyer, Class groups of dihedral extensions, Math. Nachr. 278 (2005), no. 6, 679-691.
[14] F. Lemmermeyer, Galois Action on Class Groups, Journal of Algebra. Volume 264, (2003), 553-564.

[^131]
Second 3-class groups of parametrized real quadratic fields

Mohammed TALBI
Regional center of Education and Training, Oujda, Morocco
talbimm@gmail.com
(With D. C. Mayer and M. Talbi)

Abstract

For certain real quadratic fields $K=\mathbb{Q}(\sqrt{d})$ of 3-class rank $\varrho_{3}(K)=2$ and discriminant $0<d<10^{9}$, given in terms of parameters $d=4 u w^{3}-27 u^{2}$ by Kishi and Miyake, the Galois group $G=\operatorname{Gal}\left(\mathrm{F}_{3}^{2}(K) \mid K\right)$ of the second Hilbert 3class field $\mathrm{F}_{3}^{2}(K)$ of K and the 3-principalization type $\varkappa(K)$ of K are determined.

References

[1] A. Azizi, M. Ayadi, M. C. Ismaïli et M. Talbi, Sur les unités des extensions cubiques cyliques non ramifiées sur certains sous-corps de $\mathbb{Q}(\sqrt{d}, \sqrt{-3})$, Ann. Math. Blaise Pascal 16 (2009), no. 1, 71-82.
[2] H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
[3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
[4] W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.), Handbook of Magma functions (Edition 2.18, Sydney, 2012).
[5] C. Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), no.235, 12931303.
[6] The GAP Group, GAP - Groups, Algorithms, and Programming - a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, 2008, http://www.gap-system.org.
[7] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1-25.
[8] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jber. der D.M.-V. 4 (1897), 175-546.
[9] Y. Kishi, A criterion for a certain type of imaginary quadratic fields to have 3-ranks of the ideal class groups greater than one, Proc. Japan Acad. 74 (1998), Ser. A, 93-97.
[10] Y. Kishi and K. Miyake, Characterization of the quadratic fields whose class numbers are divisible by three, Tokyo Metro. Univ. Math. Preprint Series 7 (1997).
[11] Y. Kishi and K. Miyake, Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory 80 (2000), 209-217.
[12] The MAGMA Group, MAGMA Computational Algebra System, Version 2.18-5, Sydney, 2012, http://magma.maths.usyd.edu.au.
[13] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), No. $2,471-505$, DOI $10.1142 /$ S179304211250025X.
[14] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. (2010), DOI 10.1007/s00605-010-0277-x.
[15] D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
[16] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2013), no. 2, 401-456, DOI 10.5802/jtnb.842. (27th Journées Arithmétiques, Faculty of Math. and Informatics, Univ. of Vilnius, Lithuania, 2011.)

[^132]
Note on the weak global dimension of coherent bi-amalgamations

Mohamed TAMEKKANTE

Department of Mathematics, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
tamekkante@yahoo.fr
(With E. M. Bouba)

Abstract. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms and let J and J^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(J)=g^{-1}\left(J^{\prime}\right)$. The bi-amalgamation of A with (B, C) along $\left(J, J^{\prime}\right)$ with respect to (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(J, J^{\prime}\right)=\left\{\left(f(a)+j, g(a)+j^{\prime}\right) / a \in A,\left(j, j^{\prime}\right) \in J \times J^{\prime}\right\} .
$$

In this talk, we discuss the weak global dimension of coherent bi-amalgamations.

References

[1] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: the basic properties. J. Algebra Appl. 6 (3), 443-459 (2007).
[2] D'Anna, M., Finacchiaro, C.A, Fontana, M.: Amalgamated algebras along an ideal. In: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, 155-172 (2009).
[3] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals. J. Commut. Algebra, to appear (arXiv:1407.7074v1).

[^133]
On the flatness of $\operatorname{Int}(E, D)$ as a D-module

Ali TAMOUSSIT

Department of Mathematics, Faculty of Sciences Semlalia Cadi Ayyad University Marrakech, Morocco. tamoussit2009@gmail.com
(With L. Izelgue)

Abstract

Let D be an integral domain with quotient field K, E a subset of K and X an indeterminate over K. The set of integer-valued polynomials on E is defined by $\operatorname{Int}(E, D)=\{f \in K[X] \mid f(E) \subseteq D\}$. Clearly, $\operatorname{Int}(E, D)$ is a subring of $K[X]$ and if $E=D$, then $\operatorname{Int}(E, D)=\operatorname{Int}(D)$, the ring of integervalued polynomials on D. These two rings, $\operatorname{Int}(D)$ and $\operatorname{Int}(E, D)$, were studied extensively for a long time and much is known about them. [2] is a good reference on the algebraic properties of the rings of integer-valued polynomials. In this paper, we present some progress in the study of when $\operatorname{Int}(E, D)$ is locally free, or flat, as a D - module (cf. [3, Problem 19]).

References

[1] P.-J. Cahen, Integer-Valued Polynomials on a Subset, Proc. Amer. Math. Soc., 117 (1993), 919-929.
[2] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Math. Surveys Monogr., vol. 48, Amer. Math. Soc., (1997).
[3] P.-J. Cahen, M. Fontana, S. Frisch, and S. Glaz, Open Problems in Commutative Ring Theory, Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, M. Fontana, S. Frisch and S. Glaz (editors), Springer (2014), 293305.
[4] L. Izelgue and A. Tamoussit, On the Flatness of $\operatorname{Int}(D)$ as a $D[X]$-Module, Gulf Journal of Mathematics Vol 4, Issue 4 (2016), 39-47.

[^134]
Some sufficient conditions for M-hypercyclicity of C_{0}-semigroup

Ahmed TOUKMATI
Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco.
toukmahmed@gmail.com
(With A. Tajmouati and A. El Bakkali)

Abstract

The goal in this paper is to give a sufficient conditions for a $C_{0}-$ semigroup acting on complex separable infinite dimensional Banach space X to be M-hypercyclic, this is the M-hypercyclicity criterion. Moreover we characterize the C_{0}-semigroup satisfying this criterion.

References

[1] S.I. Ansari, Existence of hypercyclic operators on topological vector space. J. F. Anal. 148 (1997) 384-390.
[2] F. Bayart, E. Matheron , Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, 2009.
[3] T. Bermudez, A. Bonilla, J. A. Conejeroand A. Peris, Hypercyclic topologically mixing and chaotic semigroups on Banach spaces. Studia Math. 170 (2005) 57-75
[4] J.A. Conejero, A. Peris.V. Müller, Hypercyclic behaviour of operators in a hypercyclic C_{0}-semigroup. J. Functional Analysis 244(2007).
[5] W. Desch, W. Schappacher, G.F. Webb, Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory Dynamical Systems 17 (1997).
[6] T.Kalmes, On chaotic Co-semigroup and infinity regular hypercyclic vectors. Proc. Amer. Math. Soc.134(2006),2997-3002.
[7] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear chaos. Springer (2011).
[8] B.F. Madore, R.A. Martinez-Avendano, Subspace hypercyclicity. J. Math. Anal. Appl., 373 (2011), 502-511
[9] A.Tajmouati, A. El Bakkali, A.Toukmati, On M-hypercyclic semigroup. Int.J. Math. Anal Vol 9 (2015) No 9 417-428.
[10] A.Tajmouati, A. El Bakkali, A.Toukmati, On some properties of M-hypercyclic C_{0} semigroup. Italian Journal of pure and applied Mathematics. N 35-2015. 351-360.

[^135]
On dual Baer modules and a generalization of dual Rickart modules

Rachid TRIBAK

Regional Centre of Trades Education and Training
Tanger, Morocco
tribak12@yahoo.com

Abstract

We study the notion of wd-Rickart (or weak dual Rickart) modules (i.e. modules M such that for every nonzero endomorphism φ of M, the image of φ contains a nonzero direct summand of M). We obtain two new characterizations of dual Baer modules. We also characterize the class of rings R for which every right R-module is wd-Rickart. A number of examples which delineate the concepts and results are included.

References

[1] D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glasgow Math. J. 52 (2010), 261-269.
[2] G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011), 4036-4058.

[^136]
Stability of Gorenstein $g r$-flat modules

Ramalingam UDHAYAKUMAR

Department of Mathematics
Bannari Amman Institute of Technology
Sathyamangalam - 638 401, Erode, TN, India.
udhayaram_v@yahoo.co.in

Abstract

In this paper, first we introduce second degree Gorenstein $g r$-flat modules. Secondly, we introduce $G F$ - $g r$-closed rings and gives a characterization of this ring. Finally, we show that the two-degree Gorenstein $g r$-flat modules are nothing more than that the Gorenstein $g r$-flat modules over a $G F$ - $g r$-closed ring.

Semicommutativity of the rings relative to prime radical Burcu UNGOR

Department of Mathematics, Ankara University
Ankara, Turkey
bungor@science.ankara.edu.tr
(With H. Kose)

Abstract

We introduce a class of rings which behave like semicommutative rings by employing the prime radical of a ring. This kind of rings is called P semicommutative. We investigate general properties of P-semicommutative rings and some interrelations among P-semicommutative rings and the other versions of semicommutativity, such as weakly semicommutative rings, nil-semicommutative rings and central semicommutative rings. It is proved that the concepts of clean rings and exchange rings coincide for P-semicommutative rings. A relation between maximal right ideals and idempotents of a P-semicommutative ring is obtained. Characterizations of P-semicommutative rings with their extensions are also given.

[^137]
On generalization of Schur's Lemma for group representation on module over PIDs

Sri WAHYUNI

Algebra Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada
Yogyakarta-IndonesiA
swahyuni@ugm.ac.id
(With I. E. Wijayanti and N. Hijriati)

Abstract

Group representations allow one to study an abstract group in terms of linear transformations on vector spaces. The main point of studying group representations is to reduce group theoretic problems to those of linear algebra which are well understood. The inverse direction can also be fruitful; that is, sometimes one can understand certain problems of linear algebra better by using ideas from group representation theory. One of the tool in studying the group representation is the Schur's Lemma which state that if V and W are irreducible representations of group G over field k, then (1) If $\phi: U \rightarrow V$ is a G-module homomorphism, then either $\operatorname{Im}(\phi)=\{0\}$ or ϕ is an isomorphism. (2) If $\phi: U \rightarrow V$ is a G-module isomorphism, then there exists $\lambda \in \mathbb{C}$ such that $\phi(v)=\lambda v$ for all $v \in V$.

In this paper we will present the generalization of the Schur's Lemma for group representation on module over PIDs. The result of this study will be used to investigate the complete reducible properties of group representation on module over PIDs as generalization of group representation on vector spaces over field.

[^138]
On commutativity of rings and Banach algebras with generalized derivations

Bilal Ahmad WANI
Department of Mathematics
Aligarh Muslim University
Aligarh-202002
India
bilalwanikmr@gmail.com
(With M. Ashraf)

Abstract

The objective of this paper is to discuss the commutativity of a prime ring R with centre $Z(R)$, which admits a generalized derivation f associated with a non zero derivation d such that $f\left(\left[x^{m}, y^{n}\right]\right) \pm\left[x^{m}, y^{n}\right] \in Z(R)$ for all $x, y \in R$. Finally, we apply these purely ring theoretic results to obtain commutativity of Banach algebra. In particular, we prove that if A is a prime Banach algebra which admits a continuous linear generalized derivation f associated with a nonzero continuous linear derivation d such that either $f\left(\left[x^{m}, y^{n}\right]\right)-\left[x^{m}, y^{n}\right] \in Z(A)$ or $f\left(\left[x^{m}, y^{n}\right]\right)+\left[x^{m}, y^{n}\right] \in Z(A)$, for an integer $m=m(x, y)>1$ and sufficiently many x, y in A, then A is commutative.

References

[1] M. Ashraf, A. Ali and S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31(3) (2007), 415-421.
[2] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42(1-3) (2002), 3-8.
[3] H.E. Bell, On the commutativity of prime rings with derivation,Quaest. Math. 22(3) (1999), 329-335.
[4] F.F.Bonsall and J. Duncan, Complete Normed Algebras,(Springer-Verlag, New York,(1973)).
[5] M.Bresar, Centralizing mappings and derivations in prime rings,J. Algebra 156(2) (1993), 385394.
[6] C.L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59(1) (1987), 98-106.
[7] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15(1) (1992), 205-206
[8] I.N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago (1969).
[9] T.K. Lee,Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica. 20(1) (1992), 27-38.
[10] E.C. Posner,Derivation in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[11] M.A. Quadri, M.A. Khan and M. Ashraf, Some elementary commutativity theorems for rings, Math. Student 56(1-4) (1988), 223-226.
[12] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ. 44 (2002), 43-49.
[13] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), 877-884.
[14] B. Yood, On commutativity of unital Banach algebras, Bull. Lond. Math. Soc. 23(3)(1991), 278-280.

[^139]
Functionals on \mathbb{R}-vector spaces

Litegebe WONDIE

Department of Mathematics
University of Gondar
Gondar, Ethiopia
litgebihw2010@gmail.com

Abstract

In this study we introduce the notion of functionals on R-vector spaces and obtain various properties. We also introduce the concept of dual spaces and Inner product in \mathbb{R}-vector spaces and study their properties.

References

[1] F.O.Stroup, On the theory of Boolean Vector Spaces, Doctoral Thesis, University of Missiouri, Columbia, 1969
[2] K.Venkateswarlu, Direct Sums of R-Vector Spaces, South East Asian Bull. Math. Vol.19, No.1(1995)27-30.
[3] Litegebe Wondie,Zelalem Teshome,K.Venkateswarlu, Special Homomorphisms in R-vector Spaces,International Mathematical Forum,Vol.9,no.18,pp. 849-856,2014.
[4] N.Raja Gopala Rao, Vector spaces over regular rings, Math. annalen, 167, $280-291(1966)$.
[5] N.Raja Gopala Rao, Regular rings and Vector spaces over regular rings, Doctoral Thesis, Andhra University,Waltair, India, 1966.
[6] N.V.Subrahmanyam, Boolean Vector Spaces I, Math. Zeit. 83(1964), 422- 433.

[^140]
On commutativity of rings and Banach algebras with generalized derivations

Ahmad YOUSEFIAN DARANI
Department of Mathematics
Mohaghegh Ardabil Univesity
56199-11367, Ardabil
Iran
yousefian@uma.ac.ir

Abstract

Throughout this paper R is an associative ring with identity, and R-Mod denotes the category of all the unitary left R-modules. The category of M-subgenerated modules (the Wisbauer category) is denoted by $\sigma[M]$ (see [2]). In [1], Raggi et al. defined the notion of prime submodules. Let $M \in R$-Mod. A submodule N of M is called fully invariant if $f(N) \leq N$ for each R-homomorphism $f: M \rightarrow M$. Let $M \in R$-Mod and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be prime in M if whenever K, L are fully invariant submodules of M with $K \cdot L \leq N$, then $K \leq N$ or $L \leq N$.

A preradical over the ring R is a subfunctor of the identity functor on R-Mod. Denote by R-pr the class of all preradicals over R. For $\sigma, \tau \in R$-pr and $M \in R$ Mod, we define $(\sigma \tau)(M)=\sigma(\tau M)$. The notion of prime preradicals is defined in In [1]. Let $\sigma \in R$-pr. σ is called prime in R-pr if $\sigma \neq 1$ and for any $\tau, \eta \in R$-pr, $\tau \eta \preceq \sigma$ implies that $\tau \preceq \sigma$ or $\eta \preceq \sigma$.

In this talk we discuss on generalizations of the notions of prime preradicals and prime submodules. The preradical $\sigma \in R$-pr is called 2 -absorbing if $\sigma \neq 1$ and, for each $\eta, \mu, \nu \in R$-pr, $\eta \mu \nu \preceq \sigma$ implies that $\eta \mu \preceq \sigma$ or $\eta \nu \preceq \sigma$ or $\mu \nu \preceq \sigma$. We will denote by R-Ass the class of all R-modules M that the operation α-product is associative over fully invariant submodules of M, i.e., for any fully invariant submodules K, N, L of $M,(K \cdot N) \cdot L=K \cdot(N \cdot L)$. Let $M \in R$-Ass and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be 2-absorbing in M if whenever J, K, L are fully invariant submodules of M with $J \cdot K \cdot L \leq N$, then $J \cdot K \leq N$ or $J \cdot L \leq N$ or $L \cdot K \leq N$.

References

[1] Raggi, F., Ríos, J., Rincón, H., Fernández-Alonso, R., Signoret, C.: Prime and irreducible preradicals, J. Algebra Appl. 4(4) (2005), 451-466.
[2] Wisbauer, R.: Foundations of Module and Ring Theory, Philadelphia: Gordon and Breach 1991.

[^141]
On weakly prime and weakly semiprime ideals of commutative rings

Youssef ZAHIR
Department of Mathematics
Faculty of Sciences and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez
Morocco
youssef.zahir@usmba.ac.ma
(With N. Mahdou)
Dedicated to Our Professor El Amin KAIDI

Abstract

Let R be a commutative ring with identity and let P be a proper ideal of R. The notion of weakly prime (resp., weakly semiprime) ideals is introduced by Anderson-smith (resp., by Badawi), and considered as a generalization of prime (resp., semiprime) ideals. Recall that an ideal P is called weakly prime (resp., weakly semi-prime) if $0 \neq a b \in P$ implies $a \in P$ or $b \in P$ (resp., $0 \neq a^{2} \in P$ implies $a \in P$).

In this paper, we investigate the stability of the weakly prime and weakly semiprime ideals under the amalgamated duplication.

References

[1] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29(4), (2003) 831-840.
[2] A. Badawi, On weakly semiprime ideals of commutative rings, Beitrage Zur Algebra Und Geometrie,(2016).
[3] M. D'Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco 2008, W. de Gruyter Publisher, Berlin, (2009) 155-172.
[4] M. D'Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (2010), 1633-1641.

[^142]
The uniqueness of complete norm topology in Banach-Jordan pairs Chafika ZARHOUTI

Centre de Formation des Enseignants
Département de Mathématiques et Informatique
Av. Mly Abdelaziz, Souani
Tanger 90000, Moroc
chafikazar@hotmail.com
(With H. Marhnine)

Abstract

The aim of this paper consists in proving the automatic continuity of a homomorphism $\varphi=\left(\varphi_{+}, \varphi_{-}\right)$defined from a Banach-Jordan pair $V=\left(V^{+}, V^{-}\right)$ [4] onto a semisimple Banach-Jordan pair $W=\left(W^{+}, W^{-}\right)$. As a direct consequence, we show that every semisimple Banach-Jordan pair $V=\left(V^{+}, V^{-}\right)$over \mathbb{R} or \mathbb{C} has the uniqueness of norm property, that is we show that if $V=\left(V^{+}, V^{-}\right)$is a semisimple Banach-Jordan pair with each of the norms $\|\cdot\|_{+},\|.\|_{+}^{\prime},\|.\|_{-},\|.\| \|_{-}^{\prime}$ then these norms define the same topologies respectively in V^{+}and V^{-}. The analogous results earlier obtained by B. E. Johnson with respect to Banach algebras [3] and by B. Aupetit with respect to Banach-Jordan algebras [1] become direct consequences of the main result in this paper.

Unlike Johnson's and Aupetit's procedures based respectively on Representation Theory and the subharmonicity of spectral radius, our approach consists in using Spectral Theory in Banach-Jordan pairs to prove that the separating subspace $S(\varphi)=\left(S\left(\varphi_{+}\right), S\left(\varphi_{-}\right)\right)$of the homomorphism $\varphi=\left(\varphi_{+}, \varphi_{-}\right)$is contained in the Jacobson radical $\operatorname{Rad}(W)=\left(\operatorname{Rad}\left(W^{+}\right), \operatorname{Rad}\left(W^{-}\right)\right)$of $W=\left(W^{+}, W^{-}\right)$ [4]. It follows, by means of the Graph Theorem [2], that $\varphi_{\sigma}(\sigma= \pm)$ is continuous. The uniqueness of norm topology is setlled by considering the identities $I d_{V^{\sigma}}:\left(V^{\sigma},\|\cdot\|_{\sigma}\right) \longrightarrow\left(V^{\sigma},\|\cdot\|_{\sigma}^{\prime}\right)$ which are actualliy continuous and arguing with $\|\cdot\|_{\sigma}$ and $\|\cdot\|_{\sigma}^{\prime}$ interchanged.

References

[1] B. Aupetit, The uniqueness of complete norm topology in Banach algebras and Banach-Jordan algebras, J. Func. Analysis 47 (1982), 1-6.
[2] N. Bourbaki, Elements de Mathemetiques, Espaces vectoriels topologiques, Chapters I-II, Act. Sci. Ind. 1189, Hermann, Paris, 1953.
[3] B. E. Johnson, The uniqueness of (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 407-409.
[4] O. Loos, Jordan Pairs, Lecture Notes in Mathematics 460, Spriger-Verlag, Berlin, 1975.

[^143]
A special chain theorem in the set of intermediate rings

Nabil ZEIDI
Faculty of Sciences
Department of Mathematics
Sfax University. B.P. 1171. 3000
Sfax, Tunisia
zeidi_nabil@yahoo.com

Abstract

Let $R \subset S$ be an extension of integral domains, and let R^{*} be the integral closure of R in S. Our main goal is to study $[R, S]$, the set of intermediate rings between R and S. As a main tool, we establish an explicit description of any intermediate ring in terms of localizations of R (or R^{*}). This study effectively enables us to characterize the minimal extensions in $[R, S]$ and we prove a special chain theorem concerning the length of an arbitrary maximal chain in $[R, S]$. Also we establish several necessary and sufficient conditions for which every ring contained between R and S compares with R^{*} under inclusion, this answers a key question that figured in the work of Gilmer and Heinzer ['Intersections of quotient rings of an integral domain', J.Math. Kyoto Univ. 7 (1967), 133-150].

References

[1] D.D.Anderson, D.E.Dobbs and B.Mullins, The primitive element theorem for commutative algebras, Houston J. Math 25 (1999) 603-623. Corrigendum. Houston J. Math 28 (2002) 217-219.
[2] A. Ayache, A constructive study about the set of intermediate rings, Comm. Algebra 41 (2013) 4637-4661.
[3] A. Ayache and N. Jarboui, Intermediary rings in a normal pair, J. Pure Appl. Algebra 212 (2008) 2176-2181.
[4] M. Ben NasR, An answer to a problem about the number of overrings, Journal of Algebra and Its Applications Vol. 15, No. 7 (2016) .
[5] M. Ben Nasr and N. Jarboui, New results about normal pairs of rings with zero-divisors, Ric. Mat 63 (2014) 149-155.
[6] M. Ben Nasr and N. Zeidi, When is the integral closure comparable to all intermediate rings, Bull. Aust. Math. Soc. (First published online 2016), page 1 of 8^{*} doi:10.1017/S0004972716000721. [7] M. Ben Nasr and N. Zeidi, A special chain theorem in the set of intermediate rings, Journal of Algebra and Its Applications Vol. 16, No. 2 (2017) 1750185 (11 pages).
[8] P.J. Cahen, Couple d'anneaux partageant un idéal, Arch. Math 51 (1988) 505-514.
[9] E.D. Davis, Overring of commutative ring III: Normal pairs, Trans. Amer. Math. Soc 182 (1973) 175-185.
[10] D.E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the FiP property for extensions of commutative rings, Comm. Algebra 33 (2005) 3091-3119.
[11] D.E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, J. Algebra 371 (2012) 391-429.
[12] D. Ferrand and J. P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra 16 (1970) 461-471.
[13] R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc 131 (2002) 2337-2346.

[^144]
Capitulation of the 2-ideal classes of the field $\mathbb{Q}\left(\sqrt{2 q_{1} q_{2}}, i\right)$ of type $(2,2)$

Abbelkader ZEKHNIN

Pluridisciplinary Faculty of Nador
Mathematics Department
Mohammed First University
Nador, Morocco
zekha1@yahoo.fr
(With A. Aziz and M. Taous)

Abstract. Let $q_{1} \equiv q_{2} \equiv-1(\bmod 4)$ be two different prime integers and $i=$ $\sqrt{-1}$. Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 q_{1} q_{2}}, i\right)$, and denote by $\mathbf{C} l_{2}(\mathbb{k})$ the 2 -part of its class group $\mathbf{C} l(\mathbb{k})$. Let $\mathbb{k}_{1}^{(2)}$ be the Hilbert 2-class field of $\mathbb{k}_{\mathrm{k}} \mathbb{k}_{2}^{(2)}$ the Hilbert 2-class field of $\mathbb{k}_{1}^{(2)}$ and $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ be the Galois group of $\mathbb{k}_{2}^{(2)} / \mathbb{k}$. Assume $\mathbf{C} l_{2}(\mathbb{k}) \simeq(2,2)$; the aim of this note is to study the capitulation of the 2 -ideal classes of \mathbb{k} in the three unramified extensions of \mathbb{k} within $\mathbb{k}_{1}^{(2)}$, and to determine the structure of G.

References

[1] A. Azizi, Sur le 2-groupe de classes d'idéaux de $\mathbb{Q}(\sqrt{d}, i)$, Rend. Circ. Mat. Palermo (1999) 48-71. doi:10.1007/BF02844380
[2] A. Azizi, Sur la capitulation des 2-classes d'idéaux de $\mathbb{k}=\mathbb{Q}(\sqrt{2 p q}, i)$, où $p \equiv-q \equiv 1(\bmod 4)$, Acta. Arith. 94 (2000), 383-399, Zbl 0953.11033, MR 1779950.
[3] A. Azizi, Unités de certains corps de nombres imaginaires et abéliens sur Q, Ann. Sci. Math. Québec 23 (1999), no 1, 15-21, Zbl 1041.11072, MR 1721726.
[4] A. Azizi and M. Taous, Détermination des corps $\mathbf{k}=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$ dont les 2-groupes de classes sont de type $(2,4)$ ou $(2,2,2)$, Rend. Istit. Mat. Univ. Trieste. 40 (2008), 93-116, Zbl 1215.11107, MR2583453.
[5] A. Azizi, A. Zekhnini and M. Taous, On the generators of the 2-class group of the field $\mathbb{Q}(\sqrt{d}, i)$, IJPAM, Volume 81, No. 5 (2012), 773-784.
[6] A. Zekhnini, A. Azizi and M. Taous, On the generators of the 2-class group of the field Q ($\left.\sqrt{q_{1} q_{2} p}, i\right)$ Correction to Theorem 3 of [5], IJPAM, Volume 103, No. 1 (2015), 99-107.
[7] A. Azizi, A. Zekhnini and M. Taous, On the strongly ambiguous classes of $\mathbb{k} / \mathbb{Q}(i)$ where $\mathbb{k}=$ $\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$, Asian-Eur. J. Math. 7 (2014), no. 1, Zbl 1292.11119, MR3189588.
[8] A. Azizi, A. Zekhnini and M. Taous, On the strongly ambiguous classes of some biquadratic number fields, Mathematica Bohemica, 141, No. 3, (2016) 363-384.
[9] A. Azizi, A. Zekhnini and M. Taous, Capitulation in the absolutely abelian extensions of some fields $\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}, \sqrt{-1}\right)$, http://arxiv.org/abs/1507.00295v1. submitted.
[10] A. Azizi, A. Zekhnini and M. Taous, Structure of $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ for some fields $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$ with $\mathbf{C} l_{2}(\mathbb{k}) \simeq(2,2,2)$, Abh. Math. Sem. Univ. Hamburg, Vol 84, 2 (2014), 203-231, MR3267742.
[11] A. Azizi, A. Zekhnini, M. Taous and Daniel C. Mayer, Principalization of 2-class groups of type $(2,2,2)$ of biquadratic fields $\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}, i\right)$, Int. J. Number Theory, Vol. 11, 4, (2015) 1177-1215.
[12] A. Azizi, A. Zekhnini and M. Taous, Coclass of $\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ for some fields $\mathfrak{k}=$ $\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}, i\right)$ with 2 -class groups of type (2, 2, 2), J. Algebra Appl, Vol. 15, No. 2 (2016) DOI: 10.1142/S0219498816500274.
[13] F. P. Heider and B. Schmithals, Zur kapitulation der idealklassen in unverzweigten primzyklischen erweiterungen, J. Reine Angew. Math. 366 (1982), 1-25, Zbl 0505.12016, MR 0671319.
[14] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Univ. Tokyo Sect. I 13 (1966), 201-209, Zbl 0158.30103, MR 0214565.

[^145]
Three pearls of Bernoulli numbers

Abdelmoumène ZÉKIRI

Faculty of Mathematics
Usthb, Algiers
Algeria
azekiri@usthb.dz
(With F. Benchérif)

Abstract

The Bernoulli numbers are fascinating and ubiquitous numbers; they occur in several domains of Mathematics like Number theory (FLT), Group theory, Calculus and even in Physics. Since Bernoulli's work, they are yet studied to find their secret [?], particularly to find relationships between them. In this talk, we give, firstly, a short response [?] to a problem asked, in 1971, by Carlitz [3] and studied by many authors like Prodinger [7], the second pearl is an answer to a question asked, in 2008, by Tom Apostol [1]. The third pearl is a new proof of a relationship already given in 2011 [11].

References

[1] Tom M.. Apostol. A Primer on Bernoulli Numbers and Polynomials, Mathematics Magazine, Vol. 81, No. 3 (Jun., 2008). 178-190 .
[2] Bencherif, F. et Garici, T., Suites de Cesàro et nombres de Bernoulli. Publ. Math. Besançon Algèbr. Théor. Nr, (1), 19-26.(2012).
[3] L. Carlitz. Problem 795. Math. Mag. 44 (1971), 107.
[4] W. Y. C. Chen, L.H. Sun, Extended Zeilberger's Algorithm for Identities on Bernoulli and Euler Polynomials, J. Number Theory 129, (2009). 2111-2132.
[5] I. M. Gessel, Applications of the classical umbral calculus, Algebra Universalis 49 (2003) .397434, dedicated to the memory of Gian-Carlo Rota.
[6] H. W. Gould and J. Quaintance, Bernoulli numbers and a new binomial transform identity. J. Integer Sequences 17 (2014), Article 14.2.2.
[7] H. Prodinger, A Short Proof of Carlitz's Bernoulli Number Identity, J. Integer Sequences 17.2 (2014), Article 14.4.1.
[8] A. G. Shannon. Solution of Problem 795. Math. Mag. 45 (1972), 55-56.
[9] P. Vassilev and M. Vassilev-Missana. On one remarkable identity involving Bernoulli numbers. Notes on Number Theory and Discrete Mathematics 11 (2005), 22-24.
[10] J. Wu, Z.-W. Sun and H. Pan, Some identities for Bernoulli and Euler polynomials, Fibonacci Quart. 42 (2004), 295-299.
[11] Zékiri, A. and Bencherif, F. . A new recursion relationship for Bernoulli Numbers. Annales Mathematicae et Informaticae Vol.38. 2011, 123-126).

[^146]
Modules over a new Ring of ponderation functions

Nasr ZEYADA
Department of Mathematics university of Jeddah
Jeddah, KSA
nzeyada@gmail.com
(With M. Assal)

Abstract

In this paper we study a class of modules over a new ring of ponderation functions recently introduced in [1], so we prove that Laplace transform and Fourier transform generate some free modules over the ring of ponderation functions. Moreover we characterize the projective modules and simple modules and we prove that the socle of this ring is not an injective module.

References

[1] Assal M. and Zeyada N, New ring of a class of Bessel integral operators, Integral Transforms Spec Funct. 27(8) (2016), 611-619.
[2] T. Pierce RS, Associative Algebras, Graduate Texts in Mathematics.

[^147]
Caractérisation des signaux fECG par le microscope mathématique : Transformée en ondelettes

Said ZIANI

Equipe de recherche en nanobiotechnologie
LABO ENSET, ENSIAS
Université mohamed V
Rabat, Morocco
ziani9@yahoo.fr
(With A. Jbari)

RÉSumé. Les maladies et malformations cardiaques sont les principales causes de décés à la naissance. Chaque année environ un bébé sur 125 ,présente une forme de malformations cardiaques congénitales qui apparaissent dans les premières semaines de grossesse , le suivi régulier de la fréquence cardiaque foetale et la détection précoce des anomalies aide le cardio-pédiatre à prescrire les médicaments appropriés même pendant la grossesse et à prendre les précautions adaptées .L'ECG du foetus est la representation temporelle de l'évolution du champ électrique dans le muscle cardiaque permettant de détecter le risque.
Malheureusement le signal fECG de faible énergie se trouve noyé dans celui de la mère de puissance beaucoup plus forte.Notre objectif est de caractériser l'ECG du fæetus apartir du signal global en utilisant une approche avancée se basant sur un microscope mathématique appelée Transformée en ondelettes.

Références

[1] B.BurkHubbard.Ondes et Ondelettes.La saga d'un outil mathématique.Pour la science,Belin,Paris, 1995.
[2] F.Abdelliche and A.Charef.Contribution au diagnostic des signaux électrocardiographiques en utlisant les ondelettes fractionnaires .thesis , université Montouri de Constantine, 2015.
[3] S.Noorzadeh.Extraction de l'ECG du fæetus et de ses caractéristiques graçe à la multimodalité.thesis ,université GrenobleAlpes,2 novembre 2015.

[^148]
[^0]: Mathematics Subject Classification (2010): 16W25, 16 Y 30.
 Keywords: Left near-rings, zero symmetric, derivations, permuting n-derivations.

[^1]: Mathematics Subject Classification (2010):.
 Key words: .

[^2]: Mathematics Subject Classification (2010): Primary: 20F05; Secondary: 20D15.
 Key words: finite 2-groups, deficiency zero, Schur multiplicator.

[^3]: Mathematics Subject Classification (2010):
 Key words: Prime ring; Involution; Derivations; generalized derivation.

[^4]: Mathematics Subject Classification (2010):.
 Key words: Perfect number, Unitary Divisors, Multiplicatively unitary perfect number.

[^5]: Mathematics Subject Classification (2010): .
 Key words: .

[^6]: Mathematics Subject Classification (2010):
 Key words:

[^7]: Mathematics Subject Classification (2010):
 Key words: Element order, Order classes, Prime order.

[^8]: Mathematics Subject Classification (2010):
 Key words: .

[^9]: Mathematics Subject Classification: 20F10, 20F36, 20M05, 57M25.
 Key Words and phrases: braid, Grobner-Shirshov basis, centralizer, normal form, summit word, quasipositive braid.

[^10]: Mathematics Subject Classification (2010):
 Key words: .

[^11]: Mathematics Subject Classification (2010): Primary: 03E05, 06A05; Secondary: 03E04, 03E10.
 Key words: directed set, infinite posets, cofinality, linear order.

[^12]: Mathematics Subject Classification (2010): Primary 13A15, 13E15; Secondary 13B99.
 Key words: Coherence, nilradical, Nil_{*}-coherence, special Nil_{*}-coherence, finitely presented module, amalgamated algebra, trivial extension.

[^13]: Mathematics Subject Classification (2010):
 Key words:

[^14]: Mathematics Subject Classification (2010):
 Key words: Pure cubic field, 3-class group, 3-rank.

[^15]: Mathematics Subject Classification (2010):
 Key words: Flat, Cohmology, Čech cohomology, quasi-coherent module, semi-separated scheme.

[^16]: Mathematics Subject Classification (2010): .
 Key words: .

[^17]: Mathematics Subject Classification (2010):
 Key words: GV-ideal, GV-torsionfree module, w-module, w-Noetherian ring, Krull ring.

[^18]: Mathematics Subject Classification (2010): 16 K 20.
 Key words: Σ-modules, σ-summable modules, summable modules, α-modules, $(\omega+n)$-projective modules.

[^19]: Mathematics Subject Classification (2010):
 Key words: Fuzzy polynomial; fuzzu structred element; fuzzy points.

[^20]: Mathematics Subject Classification (2010): .
 Key words: .

[^21]: Mathematics Subject Classification (2010):
 Key words:.

[^22]: Mathematics Subject Classification (2010):
 Key words:

[^23]: Mathematics Subject Classification (2010) : .
 Key words : .

[^24]: Mathematics Subject Classification (2010): .
 Key words: Cryptography, Elliptic Curve, plain Image, Deoxyribo Nucleic Acid (DNA), encryption, Decryption.

[^25]: Mathematics Subject Classification (2010): .
 Key words: .
 The first part of this work was done when the author was at Alimam university, Riyadh. K.S.A.

[^26]: Mathematics Subject Classification (2010):
 Key words: Chaos, Synchronization, Active control.

[^27]: Mathematics Subject Classification (2010): 16D25, 16D80.
 Key words: Right S-Noetherian rings, completely prime right ideals, Oka families of right ideals, point annihilator sets.

[^28]: Mathematics Subject Classification (2010):
 Key words:

[^29]: Mathematics Subject Classification (2010):
 Key words: topological complexity, sectional categorie, cup lenght.

[^30]: Mathematics Subject Classification (2010): Primary 47B49; Secondary 47B48, 47A10, 46 H 05.
 Key words: .

[^31]: Mathematics Subject Classification (2010): 16S50,16S70,16U99.
 Key words: Quasipolar ring, J-quasipolar ring,weakly J-quasipolar ring, uniquely clean ring.

[^32]: Mathematics Subject Classification (2010): 16S50,16S70,16U99.
 Key words: Quasipolar ring, δ-quasipolar ring, δ-clean ring, J-quasipolar ring.

[^33]: Mathematics Subject Classification (2010):.
 Key words:.

[^34]: Mathematics Subject Classification (2010): 16W10, 16W25, 16U80.
 Key words: ring, semi-derivations, left semi-derivations, generalized semi-derivations, left generalized semi-derivations.

[^35]: Mathematics Subject Classification (2010): 86A05, 00A71, 97 M 10.
 Key words: geographic information systems, digital elevation model, natural disasters, mathematical modeling, environmental sciences.

[^36]: Mathematics Subject Classification (2010): .
 Key words: BFSS and IKKT models, Compactification, Matrix Model, Non- Commutative geometry.

[^37]: Mathematics Subject Classification (2010):
 Key words: .

[^38]: Mathematics Subject Classification (2010):
 Key words: .

[^39]: Mathematics Subject Classification (2010): 13F05, 13A15, 13B10, 13D02, 13D05.
 Key words: Weakly coherent ring, coherent ring, amalgamated duplication, amalgamated algebra.

[^40]: Mathematics Subject Classification (2010):
 Key words: .

[^41]: Mathematics Subject Classification (2010): .
 Key words: .

[^42]: Mathematics Subject Classification (2010):
 Key words: Retractable ring, co-retractable ring, simple extension ring.

[^43]: Mathematics Subject Classification (2010): .
 Key words: .

[^44]: Mathematics Subject Classification (2010):
 Key words: Iwasawa theory, modular forms

[^45]: Keywords: Lattice, Cryptography, Exchange of Information, Geometric Space

[^46]: Mathematics Subject Classification (2010): Primary: 20F05; Secondary: 20D15.
 Key words: finite 2-groups, deficiency zero, Schur multiplicator.

[^47]: Mathematics Subject Classification (2010): .
 Key words: .

[^48]: Mathematics Subject Classification (2010):.
 Key words:MIMO optical; O-MGDM; multimode fiber; and transmission capacity.

[^49]: Mathematics Subject Classification (2010):
 Key words:

[^50]: Mathematics Subject Classification (2010):
 Key words:

[^51]: Mathematics Subject Classification (2010): .
 Key words:.

[^52]: Mathematics Subject Classification (2010):-
 Key words: Emulate, Arduino, Neral Network, Backpropagation.

[^53]: Mathematics Subject Classification (2010): 16E50, 16W25, 16N60, 16W99.
 Key words: prime ring, semiprime ring, Jordan triple derivation, (m, n)-Jordan triple centralizer.

[^54]: Mathematics Subject Classification (2010):
 Key words: Linear Recurring Sequences, period, modulo p, polynomials, Legendre symbols, companion polynomial, algorithm cost, Berlekamp's algorithm, rank of a matrix, law of reciprocity quadratic.

[^55]: Mathematics Subject Classification (2010): 12F15.
 Key words: Purely inseparable, Relatively perfect, Degree of irrationality, Modular extension, q-finite extension, $l q$-finite extension, absolutely $l q$-finite extension.

[^56]: Mathematics Subject Classification (2010): .
 Key words: .

[^57]: Mathematics Subject Classification (2010): 94A60, 68Q42, 68Q70, 20 M 05.
 Key words: Words and Languages, The free monoid and relatives, Morphism of monoids, deterministic finite automata.

[^58]: Mathematics Subject Classification (2010): 94B05, 94B15.
 Keywords: Gray map, Linear codes, Skew polynomial rings, Skew cyclic codes, Idempotent generators.

[^59]: Mathematics Subject Classification (2010): 11M20, 11M26.
 Key words: L-series; Divisor functions; Normal order;Hardy-Ramanujan estimate.

[^60]: Mathematics Subject Classification (2010): 46B42, 47B60, 47B65.
 Key words: Almost Dunford-Pettis operator, almost limited operator, the positive dual Schur property, order continuous norm, property (d).

[^61]: Mathematics Subject Classification (2010):
 Key words: Legendre semigroup; Poincraé inequality; logarithmic Sobolev inequality.

[^62]: Mathematics Subject Classification (2010):
 Key words: .

[^63]: Mathematics Subject Classification (2010): .
 Key words: Zero-divisor, graph, Power series rings.

[^64]: Mathematics Subject Classification (2010): .
 Key words: .

[^65]: Mathematics Subject Classification(2010): Primary 47A10, 47A60.
 Key words and phrases: twin prime conjecture, the cardinal of the set, prime-counting function.

[^66]: Mathematics Subject Classification (2010): .
 Key words: .

[^67]: Mathematics Subject Classification (2010): 13F20, 13B25, 13C15, 13B30.
 Key words: Integer-valued polynomial, Bhargava ring, Prime ideal, Localization Residue field, Krull dimension, Valuative dimension.

[^68]: Mathematics Subject Classification (2010): 03E70, 37F20, 54A40.
 Key words: number of fuzzy topologies.

[^69]: Mathematics Subject Classification (2010): 16W25, 15A78.
 Key words: derivable map, Jordan derivable map, alternative rings.

[^70]: Mathematics Subject Classification (2010): 20D10.
 Key words: Finite group, Cyclic group, simple group, plocal formation.

[^71]: Mathematics Subject Classification (2010): 11R16, 11R11, 11R29, 11R32, 11R37.
 Key words: 2-groups, capitulation, Hilbert class field.

[^72]: Mathematics Subject Classification (2010):
 Key words: Continued fraction, Transcendence, algebraic independence, measure.

[^73]: Mathematics Subject Classification (2010): Primary 47A53, 47A10, 47A11.
 Key words: Property $(U W \Pi)$, SVEP, Riesz commuting perturbations.

[^74]: Mathematics Subject Classification (2010):
 Key words:

[^75]: Mathematics Subject Classification (2010): .
 Key words: .

[^76]: Mathematics Subject Classification (2010): 47A10, 47A11.
 Key words: Left spectrum, Right spectrum, Single-valued extension property, Operator matrices.

[^77]: Mathematics Subject Classification (2010):
 Key words:

[^78]: Mathematics Subject Classification (2010): 13A15-13F25-13F30.
 Key words: embeddability in a zero-dimensional ring, strongly Hopfian (bounded) ring, power series ring, SFT-ring, chained ring.

[^79]: Mathematics Subject Classification (2010): .
 Key words: .

[^80]: Mathematics Subject Classification (2010):
 Key words: .

[^81]: Mathematics Subject Classification (2010):
 Key words: .

[^82]: Mathematics Subject Classification (2010): 13D05, 13D07, 18G10, 18 G 20.
 Key words: V-Gorenstein injective module, Semidualizing module, Auslander class.

[^83]: Mathematics Subject Classification (2010):
 Key words: .

[^84]: Mathematics Subject Classification (2010) : 16W25, 15A78.
 Key words : Congruences, nombres et polynomes de Bernoulli..

[^85]: Mathematics Subject Classification (2010): Primary 47B48, 47A15, Secondary 15A04.
 Key words: Commutant, Nonlinear preservers problem.

[^86]: Mathematics Subject Classification (2010):
 Key words:

[^87]: Mathematics Subject Classification (2010): Primary 20F55, Secondary 05E15, 16 Z 05.
 Key words: Temperley-Lieb algebra, Gröbner-Shirshov basis
 ${ }^{1}$ She is grateful to KIAS for its hospitality during this work.
 ${ }^{2}$ This research was supported by NRF Grant \# 2014R1A1A2054811.
 *Corresponding author

[^88]: Mathematics Subject Classification (2010): 16N60, 16W10, 17 B 60.
 Key words: Semiprime ring, Lie algebra, Jordan algebra, faithful f-free, involution, skew (symmetric) element, ad-nilpotent element, Jordan element.

[^89]: Mathematics Subject Classification (2010): .
 Key words: .

[^90]: Mathematics Subject Classification (2010): 13A15, 13E.
 Key words: Prime ideals, S-prime ideals, S-Noetherian rings, S-finite ideals.

[^91]: Mathematics Subject Classification (2010): 16W25; $46 J 10$.
 Key words: Prime ring; Banach algebra; Derivations; generalized derivation.

[^92]: Mathematics Subject Classification (2010): 16E50, 16W25, 16N60, 16W99.
 Key words: Calculator; Zakat; Mathematics equations; Framework; XML; MDA; MOF.

[^93]: Mathematics Subject Classification (2010): 16D40, 16E30,16E65.
 Key words: Gorenstein projective module, Gorenstein flat module, glat module, coherent ring, preenvelope, precover.

[^94]: Mathematics Subject Classification (2010):
 Key words: .

[^95]: Mathematics Subject Classification (2010): 11R23, 11R27, 11R29, 11R42
 Key words: Iwasawa theory, Euler systems, Stark units.

[^96]: Mathematics Subject Classification (2010) : .
 Key words : .

[^97]: Mathematics Subject Classification (2010): 40A15, 15A60, 47A63.
 Key words: Continued fraction, Convergence, Algebric independence, Matrix.

[^98]: Mathematics Subject Classification (2010): .
 Key words: Pre-Hilbert (commutative, flexible) algebra, division algebra, normed algebra, central element.

[^99]: Mathematics Subject Classification (2010): 16N60, 16R50, 16W25.
 Key words: derivation, local generalized derivation.

[^100]: Mathematics Subject Classification (2010):
 Key words: .

[^101]: Mathematics Subject Classification (2000): 16N60, 16W10.
 Key words: Semiprime ring, left ideal, multiplicative (generalized)-derivation, multiplicative (generalized)-(α, β)-derivation, centrally-extended generalized (α, β)-derivation, centrally-extended multiplicative (generalized)-(α, β)-derivation, generalized (α, β)-derivation.

[^102]: Mathematics Subject Classification (2010):
 Key words:

[^103]: Mathematics Subject Classification (2010): 13A05; 13F15; 13C99.
 Key words: splitting multiplicatively closed subset; factorization; atomicity.
 This research was financially supported in part, by National Elites Foundation of Iran.

[^104]: Mathematics Subject Classification (2010):
 Key words: Fuzzy Subgroups, Fuzzy Equivalence Relations,Inclusion-Exclusion Principle.

[^105]: Mathematics Subject Classification (2010): .
 Key words:

[^106]: Mathematics Subject Classification (2010) :.
 Key words :Produit Codes Matrice, cryptographie, chiffrement, clé publique, McEliece.

[^107]: Mathematics Subject Classification (2010):.
 Key words: cyclic field, prime degree, class group.

[^108]: Mathematics Subject Classification (2010) : .
 Key words : Systeme de Coxeter, groupe symetrique affine, problème de distance d'inversion, inversion paracentrique, gène, phylogénie.

[^109]: Mathematics Subject Classification (2010): 13A15, 13B02, 13B21.
 Keywords: G-ring, G-ring pair, amalgamated algebras, amalgamated duplication.

[^110]: Mathematics Subject Classification (2010): 13E99, 13A99, 13A15.
 Key words: Primary ideal, primary spectrum, Zariski topology.

[^111]: Mathematics Subject Classification (2010): 16N60, 16W20, 16R50.
 Keywords: Prime and semiprime ring, automorphism, maximal right ring of quotient, generalized polynomial identity(GPI)

[^112]: Mathematics Subject Classification (2010): 16D10, 16D80.
 Key words: Rad-supplemented; weak Rad- \oplus-supplemented module; Cofinitely weak $\operatorname{Rad}-\oplus$ -supplemented module.

[^113]: Mathematics Subject Classification (2010): .
 Key words: .

[^114]: Mathematics Subject Classification (2010): 16Y30, 13N15, 15A27.
 Key words: 3 -prime near-rings, generalized semiderivations, commutativity.

[^115]: Mathematics Subject Classification (2010):
 Key words:

[^116]: Mathematics Subject Classification (2010): .
 Key words: .

[^117]: Mathematics Subject Classification (2010) : .
 Key words : .

[^118]: Mathematics Subject Classification (2010): 20M10, 20M25.
 Key words: .

[^119]: Mathematics Subject Classification (2010): .
 Key words: cyclic codes, minimal distance, artinian local ring, maximal codes

[^120]: Mathematics Subject Classification (2010):
 Key words: Cyclic cubic extension, monogenicity, power basis generator, normal integral basis.

[^121]: Mathematics Subject Classification (2010): 20M20.
 Keywords: Left near-rings, zero symmetric, derivations, permuting n-derivations.

[^122]: Mathematics Subject Classification (2010):
 Key words: Prime rings, semiprime ring, involution, \star-prime ring, \star-ideal, left centralizer.

[^123]: Key words and phrases: strongly co-hopfian, Abelian goups, p-group, order, direct sums of cyclic groups, basic subgroups, monomorphism group, automorphism group.

[^124]: Mathematics Subject Classification (2010) : 16S50, 16D60.
 Key words : Lemme de Schur ; Module simple ; CSL-anneau.

[^125]: Mathematics Subject Classification (2010):
 Key words: Cryptography; Efficiency; Elliptic curve; Security.

[^126]: Mathematics Subject Classification (2010): .
 Key words: .

[^127]: Mathematics Subject Classification (2010): .
 Key words: .

[^128]: Mathematics Subject Classification (2010): .
 Key words: .

[^129]: Mathematics Subject Classification (2010):
 Key words: .

[^130]: Mathematics Subject Classification (2010) : .
 Key words : .

[^131]: Mathematics Subject Classification (2010) : .
 Key words: .

[^132]: Mathematics Subject Classification (2010): Primary 11R29, 11R16, 11R11; Secondary 11Y40.
 Key words: 3 -class field tower, 3 -principalization, real quadratic field.

[^133]: Mathematics Subject Classification (2010): 13F05, 13A15, 13E05, 13F20, 13C10, 13C11, 13F30, 13D05.

 Key words: (bi)-amalgamated algebras, weak global dimension, coherent rings

[^134]: Mathematics Subject Classification (2010): Primary: 13C11, 13F20 ; Secondary: 13F05, 13 B 30.
 Key words: Integer-valued polynomials, Flat module, Locally free module.

[^135]: Mathematics Subject Classification (2010): 46H05, 47A10, 47D03.
 Key words: C_{0}-semigroups, Hypercyclicity, Topologically transitive, M-hypercyclicity, Mtransitive.

[^136]: Mathematics Subject Classification (2010): 16D10; 16D70; 16D80.
 Key words: Dual Rickart modules, Dual Baer modules, wd-Rickart modules.

[^137]: Mathematics Subject Classification (2010): 16S50, 16U99.
 Key words: Semicommutative ring, P-semicommutative ring, prime radical of a ring.

[^138]: Mathematics Subject Classification (2010):
 Key words: .

[^139]: Mathematics Subject Classification (2010): 16W25; $46 J 10$.
 Key words: Prime ring; Banach algebra; Derivations; generalized derivation.

[^140]: Mathematics Subject Classification (2010):
 Key words: \mathbb{R}-vector space,Special homomorphism,Functional,Dual Space,Inner Product.

[^141]: Mathematics Subject Classification (2010):
 Key words:

[^142]: Mathematics Subject Classification (2010):
 Key words: .

[^143]: Mathematics Subject Classification (2010): .
 Key words: .

[^144]: Mathematics Subject Classification (2010): Primary 13B02; Secondary 13A35, 13B35, 13E05.
 Key words: Intermediate ring; Minimal ring extension; Finite chain condition; Maximal chain; Normal pair; Support; Conductor.

[^145]: Mathematics Subject Classification (2010): 11R11, 11R16, 11R20, 11R27.
 Key words: fundamental systems of units, 2-class group, capitulation, quadratic fields, biquadratic fields.

[^146]: Mathematics Subject Classification (2010): 11B68.
 Key words: Bernoulli numbers, Bernoulli polynomials.

[^147]: Mathematics Subject Classification (2010):
 Key words: Ring , Module, ponderation ring.

[^148]: Mathematics Subject Classification (2010) :.
 Key words : signal ECG ; Transformée de Fourrier ; ondelettes.

